Faculty / Presenter Disclosure

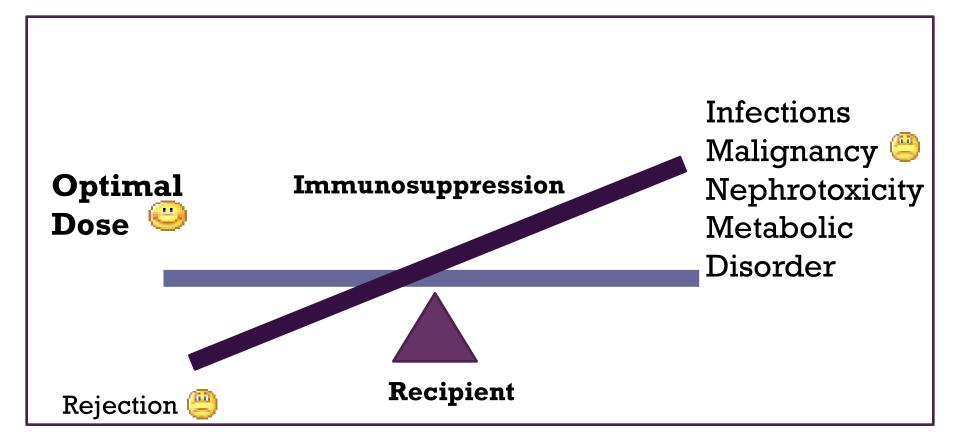
- Faculty: Maria Hernandez Fuentes
- Relationships with commercial interests:
 - Other: Employee of UCB Pharma
 - No off-label (or on-label) use of any product from UCB will be discussed in my presentation.

Pioneering better health for a

State of the art:

Fingerprints of tolerance

Dr Maria Hernandez-Fuentes

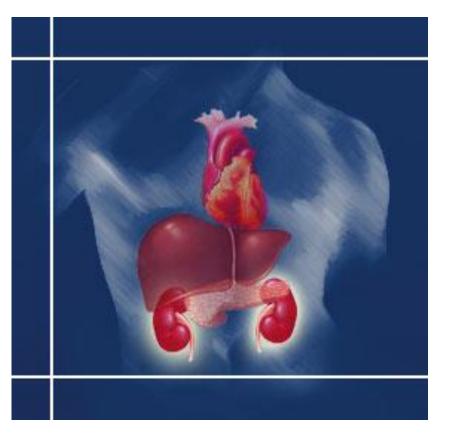

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Pioneering better health for a

The everlasting Challenge

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

How would finding tolerance help?



Holy Grial in clinical Transplantation:

Tolerance

http://www.ncbi.nlm.nih.gov/books/NBK26921 /

Donor-specific unresponsiveness in the context of otherwise normal immune responses

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Why Biomarkers of Tolerance?

- To identify *spontaneous* "tolerant-phenotype"
 - Personalised medicine: could those patients, identified as such, be optimally maintained with less immunosuppression?
- Evaluate novel "tolerance-inducing" therapies (cell therapy, regenerative therapies, etc)
 - would these patients display the same markers as patients with *spontaneous* tolerance?
- Better understand allo-immune regulation
 - would such markers allow us to understand better mechanisms of tolerance?

2002 – 2010 Indices of Tolerance

& ITN

King's College London, UK

Robert Lechler

Maria Hernandez Fuentes **Pervinder Sagoo Esperanza Perucha** Elvira Jimenez Flavia Rovis Saskia Stevenson **Sharon Hughes**

Guy's Hospital, UK

Rachel Hilton Robert Vaughn Fred Compton Liz, Ola and Diane

Oxford University, UK

Kathryn Wood

Stephanie Chapman Piotr Trzonkowski **Gregor Warnecke** Ian Roberts

Imperial College London, UK

Anthony Warrens

Amany Ballow Ruhena Sergeant Jan Waters **Jackie and Katie**

McGill University Montreal, Canada David Stephens

Institute for Medical Immunology, **ULB**, Belgium

Michel Goldman

Ligia Craciun **Alain Le Moine Myriam Libin**

Miltenyi Memorec, Germany

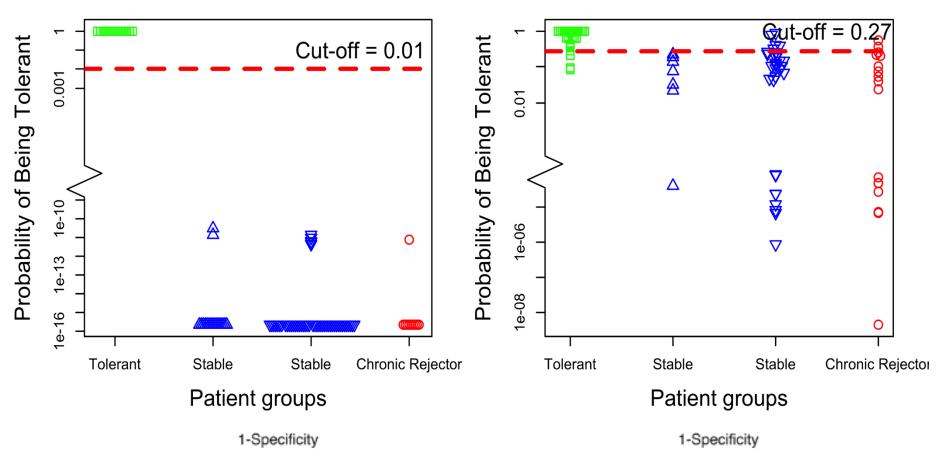
Uwe Janssen **Bettina Peters** Stefan Tomiuk

Charité University Medicine, Germany Hans-Dieter Volk Birgit Sawitzki

Immune Tolerance Network Vicki Seyfert Larry Turka **Kenneth Newell Kasia Bourcier Ignacio Sanz** Wei Chungwen **James Roger**

ITERT - INSERM, France

Jean-Paul Soulillou


Sophie Brouard Cecile Braudeau Magali Giral **Patrick Miqueu**

Predicted Probability of being tolerant

EU Sample

US Sample

Sagoo P*, Perucha E*, www.transplant-tolerance.org.uk, et al. J CLIN INVEST (2010) 120 (6): 1848-1861

Identification of a B cell signature associated with renal transplant tolerance in humans

Kenneth A. Newell,¹ Adam Asare,^{2,3} Allan D. Kirk,¹ Trang D. Gisler,^{2,3} Kasia Bourcier,^{2,3} Manikkam Suthanthiran,⁴ William J. Burlingham,⁵ William H. Marks,⁶ Ignacio Sanz,⁷ Robert I. Lechler,^{8,9} Maria P. Hernandez-Fuentes,^{8,9} Laurence A. Turka,^{3,10} and Vicki L. Seyfert-Margolis,^{3,11} for the Immune Tolerance Network ST507 Study Group

Tolerant subjects showed increased expression of multiple B cell differentiation genes.

A set of just 3 of these genes distinguished tolerant from non-tolerant recipients in a unique test set of samples.

Newell K, et al www.immunetolerance.org, et al. J CLIN INVEST (2010) 120 (6): 1836-47

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Guy's and St Thomas'

Pioneering better health for al

н.

Identification of a peripheral blood transcriptional biomarker panel associated with operational renal allograft tolerance

Sophie Brouard^a, Elaine Mansfield^{b.c}, Christophe Braud^a, Li Li^b, Magali Giral^a, Szu-chuan Hsieh^b, Dominique Baeten^{a.d}, Metzia Zhang^{b.a}, Joanna Ashton-Chess^a, Cèclie Braudeau^a, Frank Hsieh[†], Alexandre Dupont^a, Annaik Palifer^a, Anne Moreau^g, Stéphanie Louis^a, Catherine Ruiz^b, Oscar Salvatierra^b, Jean-Paul Soulillou^{a,1}, and Minnie Sarwal^b-1

Table 1. Demographic summary of patient groups (median and range)

	Training groups			Test groups					
	TOL	CR	N	TOL-test	CR-test	MIS	STA	AR	N-test
Number	5	11	8	12	11	10	12	14	8
Age, years	67	56	23	37.5	52	55.5	49	20	46
	58-73	28-75	11-27	20-87	10-59	28-83	31-67	16-24	30-66
% Male	80	63.60	37.5	75	63.6	54.50	58	64.20	0
Time post-transplant, months									
Mean	178	59	NA	137	48	139.5	172	12	NA
Range	108-360	20-158		86-372	11-158	47-262	48-269	0.5-108	
Serum creatinine, μ M/liter									
Mean	122	244	NA	115	244	98.5	107	152	NA
Range	82-139	127-492		70.4-149.6	100-686	64-161	63-147	110-704	

From microarray results a "tolerant footprint" of 49 genes.

These biomarkers were applied for prediction of operational tolerance by microarray and real-time PCR in independent test groups.

33 of 49 genes correctly segregated tolerance and chronic rejection phenotypes with 99% and 86% specificity.

The expression signature suggests that **TGF- might contribute to this process**, possibly by regulating specific phenotypes of peripheral regulatory T cells or altering the threshold for T cell activation

Proc Natl Acad Sci USA. 2007 25;104(39):15448-53

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Guy's and St Thomas' NHS NHS Foundation Trust

Centre for Transplantat

Pioneering better health for a

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Guy's and St Thomas' NHS Foundation Trust

MRC Centre for Transplantation

Genetic Analysis & Monitoring of Biomarkers of Immunological Tolerance GAMBIT study

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Guy's and St Thomas' NHS Foundation Trust

LOND

MRC

The GAMBIT Consortium. NIHR CRN

King's College London, UK

Maria Hernandez Fuentes

Sonia Norris **Estefania Nova-Lamperti** Paula Mobillo **Yogesh Kamra** Mano Runglall Jonathan Lo **Tom Lewis Florence Delanv Irene Rebollo-Mesa Rosalynn Miller Darlene Catalan** Jude Green **Robert Lechler Graham Lord**

Guy's Hospital, UK Rachel Hilton Robert Vaughn

Cardiff and Vale University Health Board

Dr Sian Griffin

Royal Free Hospital

Dr Alan Salama

King's College Hospital

Dr Sui Phin Kon **Beatriz Tucker Nicolene Atkinson**

Kent and Canterbury

Dr Chris Farmer Gillian Eaglestone Hazel Broad

Evelina Children's Hosp

Dr Manish Sinha Liz Reus, Joy & Paula

Salford Royal

Dr Phillip Kalra Lesley Haydock

St Jame's Hospital Leeds

Dr Richard Baker Dr Aravind Cherukuri Shyama-Parbatee Rughooputh

Leicester General Hospital

Dr Sue Carr Rachel Westacott Roy Marshall

Hull Royal Infirmary

Dr Sunil Bhandari **Karen James Tracy Cathcart**

I I IIII IIII AN PARTNER

Manchester Royal Infirmary

Dr Hanv Riad Dr Nick Simon Clare Griffin

Hospital Universitari Vall d'Hebrón, Barcelona **Dr Daniel Seron**

Maria Sarria

INSELSPITAL, Universitätsspital Bern **Dr Markus Mohaupt** Petra Hribova

St George's Hosp **Dr Iain McPhee Dr Jovce Popoola Raj Ramkhelawon**

Glasgow General Hospital

Dr Patrick Mark Donna Kelly Lorraine McGregor

Great Ormond Street Dr Stephen Marks

Queen Alexandra Hospital,

Northern General Hospital,

Dr William McKane

Faith Okuhoya

Guy's and St Thomas'

NHS Foundation Trust

Dr Judith Stevens

Lvnn Watkins

Frances Williams

Sheffield

Postmouth

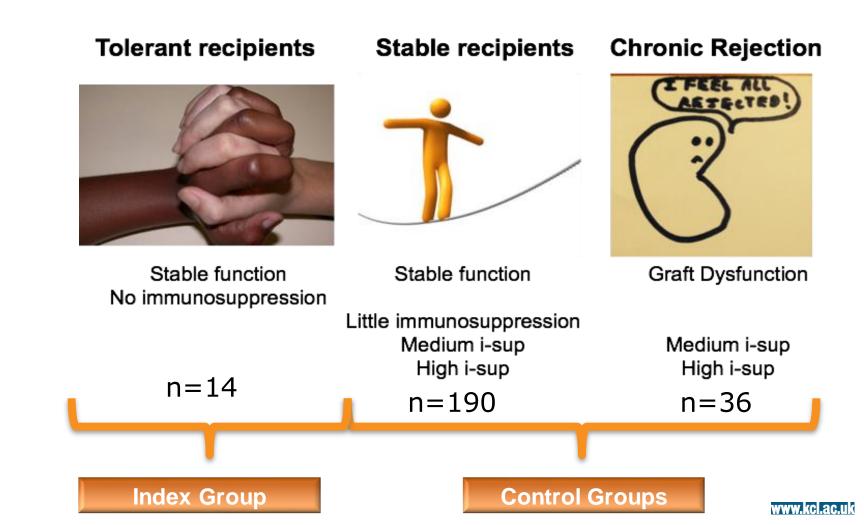
Transplantační laboratoř **IKEM, Prague**

Upsala Hospital, Sweden **Dr David Berglund**

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Dr Ondrej Vickliky

Petra Hribova


INHS

MRC

Centre for Transplantation

Biomarkers of Tolerance: Patient groups in <u>retrospective</u> cohort; aim to find the *prevalence of "tolerance"*

Immunosuppression in GAMBIT

CNI	Azathioprine vs MMF	Prednisone	Ν	Percentage #	
Cyclosporine	Azathioprine	No	25	13.2	
Cyclosporine	Azathioprine	Yes	7	3.7	
Cyclosporine	MMF	No	29	15.3	
Cyclosporine	MMF	Yes	12	6.3	
Cyclosporine	None	No	9	4.7	
Cyclosporine	None	Yes	6	3.2	
Tacrolimus	Azathioprine	No	11	5.8	
Tacrolimus	Azathioprine	Yes	1	0.5	
Tacrolimus	MMF	No	24	12.6	
Tacrolimus	MMF	Yes	8	4.2	
Tacrolimus	None	No	3	1.6	
Tacrolimus	None	Yes	4	2.1	
None	Azathioprine	No	1	0.5	
None	Azathioprine	Yes	17	8.9	
None	MMF Yes 12		12	6.3	
None	None	e Yes		6.3	
None	None	No	1 *	0.5	

Retrospective Study

H | |

17 therapy groups

Percentage from all stable patients

* Patient on Sirolimus single therapy

Note: Information of drug regimen was missing for 8 of the stable patients (4.2%)

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

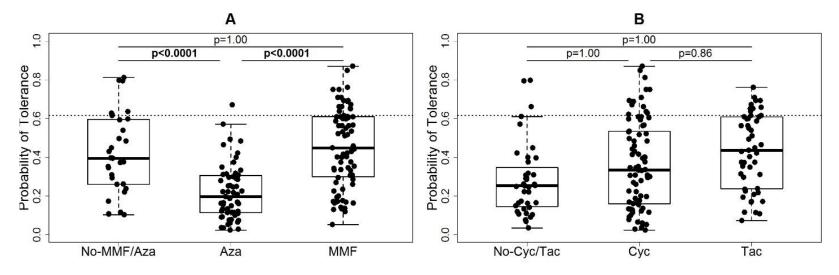
Unadjusted effect of immunosuppression

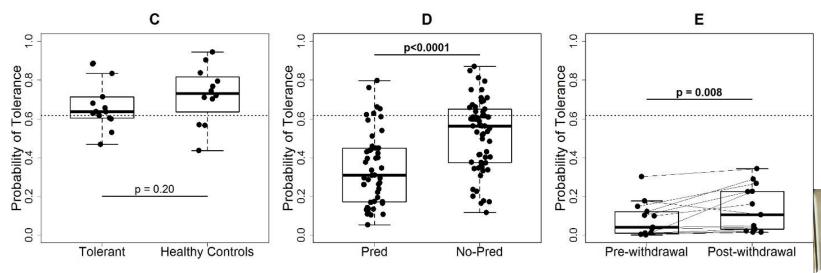
in gene expression

	Pred	Сус	Tac	Aza	MMF
PNOC	0.11	0.10	0.041	0.76	1.00
CD79b	2.1 x 10 ⁻⁰⁴	1.00	0.12	8.1 x 10 ⁻⁰⁴	0.94
TCL1A	1.9 x 10 ⁻⁰⁶	0.17	0.020	6.7 x 10 ⁻¹⁶	1.00
H3ST1	1.3 x 10 ⁻⁰⁴	0.30	0.14	3.6 x 10 ⁻⁰⁵	0.20
SH2DB1	0.42	1.00	1.00	$< 2.0 \text{ x } 10^{-16}$	0.11
TLR5	4.0 x 10 ⁻⁰³	1.00	0.095	1.00	1.00
MS4A1	3.0 x 10 ⁻⁰³	0.73	0.18	1.1 x 10 ⁻⁰⁴	1.00
FCRL1	1.7 x 10 ⁻⁰⁴	1.00	0.73	1.1 x 10 ⁻¹⁰	1.00
FCRL2	5.7 x 10 ⁻⁰⁴	1.00	0.15	1.6 x 10 ⁻⁰⁵	1.00
FoxP3_/AMann	0.69	0.16	9.0 x 10 ⁻⁰³	1.00	1.00

Rebollo-Mesa, et al AJTx 2016

Image: State State


Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre


Guy's and St Thomas' NHS

MRC Centre for Transplantation

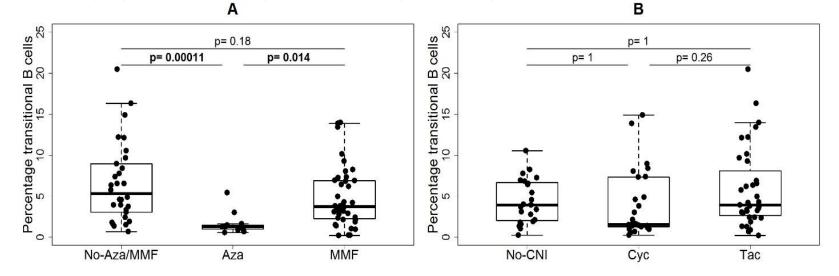
Immunosuppressants had a confounding Proverse of the expression of IoT gene set. RT-PCR

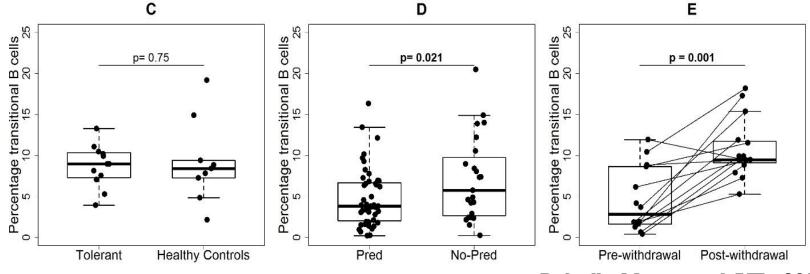
Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Rebollo-Mesa, et al AJTx 2016

Guy's and St Thomas'

NHS Foundation Trust


INHS



MRC

Immunosuppressants affected the transitional B_Acell subset size.

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Rebollo-Mesa, et al AJTx 2016

Guy's and St Thomas' NHS NHS Foundation Trust

Centre for Transplantati

MRC

H | I

1 1

11

1.118

HING'S

I I I III III III III PARTNERS

Conclusions 1

- Immunosuppression drugs the patients are taking (Aza + Pred)
 - have a major effect on the expression of the chosen genes
 - major effect on the size of the Transitional B cell compartment

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Guy's and St Thomas' NHS NHS Foundation Trust

MRC Centre for Transplantation

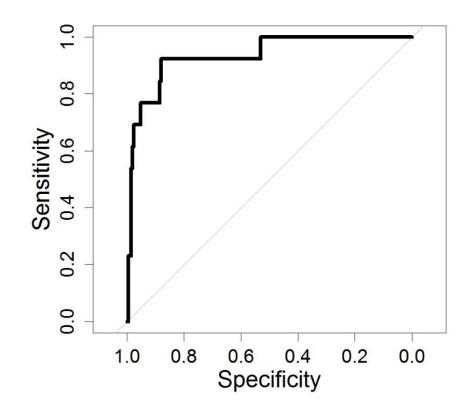
Rederived IS-independent gene-signature : IoT arrays

Validation using Fluidigm platform on GAMBIT samples.

EXPRES.	Molecular Function	Biological Processes	Documented protein expression in		
↓ ATXN3	Ubiquitin-specific protease activity	Protein metabolism	Caudate Nucelus, Cerebellum Frontal Cortex, Pons, Ubiquitous		
↓ BCL2A1	Receptor signaling complex scaffold activity	Apoptosis	B cell Bone Marrow, Colon, Intestine, Leucocyte, Lymph node, Ovary, Spleen, T cell		
↓ EFF1A1	Transcription regulator activity	Regulation of cell cycle	B cell, slets of Langerhans, Lacrimal gland, Leukocyte, Monocyte, Neutrophil, Plasma, Saliva, Semen, Skeletal muscle, Tear		
↓ TNFAIP3	Transcription regulator activity	Regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	Macrophages		
↓ NFKBIA	Transcription regulator activity	Regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	Neutrophil, T cell		
↑ GEMN7	Ribonucleoprotein	Regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	Spinal cord tissues		
↑ IGLC1	Antigen binding	Immune response	B lymphocytes		
↑ MS4A4	Unknown	Unknown	Intestine and colon		
† RAB40	GTPase activity	Cell communication Signal transduction	Platelets, Liver, Heart, Kidney, Plasma		

Rebollo-Mesa, et al AJTx 2016

Colles


LONDŎŇ

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Pioneering better health for a

Diagnostic characteristics of IS-independent signature of tolerance

Performance measure	IS-free signature		
AUC	0.93		
95% CI of AUC	0.86-1.00		
CV AUC	0.81		
Cutoff	0.54		
Sensitivity	0.92		
Specificity	0.88		
AUC Timepoint 2	0.83		
95% CI of AUC Timepoint 2	0.67 - 0.99		

Rebollo-Mesa, AJTx et 2016

Centre for Transplantatio

MRC

College

LONDON

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Robust immunosuppression independence of

IS-independent set

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

NHS Guy's and St Thomas' **NHS Foundation Trust**

College MRC LONDON

Centre for Transplantati

HING'S

IL IN A MIN (M PARTNERS

ł.

.

11

F 8 1 1 k +

Conclusions 3

• P(tolerance) unchanged after steroid withdrawal: Newsignature highlights natural counter-regulatory mechanisms, and excludes the alterations of the immune effector pathways transiently activated or inhibited by IS drugs.

- This signature is "tolerance –specific" as it is significantly different from Healthy Controls
- The use of robust statistical methods that prevent falsepositive results, and control confounding is essential prior to translation of clinical prediction models.

© 2015 International Society of Nephrology

OPEN

14 III KIIIFADO I DI FRIDES DOMENS

see commentary on page 875

A common gene signature across multiple studies relate biomarkers and functional regulation in tolerance to renal allograft

Daniel Baron^{1,2,3}, Gérard Ramstein⁴, Mélanie Chesneau^{1,2,3}, Yann Echasseriau^{1,2,3}, Annaick Pallier^{1,2,3}, Chloé Paul^{1,2,3}, Nicolas Degauque^{1,2,3}, Maria P. Hernandez-Fuentes⁵, Alberto Sanchez-Fueyo⁶, Kenneth A. Newell⁷, Magali Giral^{1,2,3}, Jean-Paul Soulillou^{1,2,3}, Rémi Houlgatte^{8,9,10} and Sophie Brouard^{1,2,3,10}

CLINICAL RESEARCH

www.jasn.org

A Three-Gene Assay for Monitoring Immune Quiescence in Kidney Transplantation

Silke Roedder,* Li Li,[†] Michael N. Alonso,[‡] Szu-Chuan Hsieh,* Minh Thien Vu,* Hong Dai,* Tara K. Sigdel,* Ian Bostock,[§] Camila Macedo,^{||} Diana Metes,^{||} Adrianna Zeevi,^{||} Ron Shapiro,^{||} Oscar Salvatierra,[‡] John Scandling,[‡] Josefina Alberu,[§] Edgar Engleman,[‡] and Minnie M. Sarwal*

The questions

- Are any of these found in tolerance inducing strategies?
 - Newell KA, et al AJTx 2015; 15: 2908–2920.
- Have we learned novel mechanisms of tolerance? Transitional B cells / Role of steroid pathway

• Increased CD40 Ligation and Reduced BCR Signalling Leads to Higher IL-10 Production in B Cells From Tolerant Kidney Transplant Patients. Nova-Lamperti E, et al Transplantation. 2017 Mar;101(3):541-547

• IL-10-produced by human transitional B-cells down-regulates CD86 expression on Bcells leading to inhibition of CD4+T-cell responses. Nova-Lamperti E, et al . Sci Rep. 2016 Jan 22;6:20044.

•Are any of these "true" biomarkers of tolerance?.

• Clinical trials of weaning are needed = controversial

Guy's and St Thomas' NHS Foundation Trust and King's College London's comprehensive Biomedical Research Centre

Guy's and St Thomas' NHS Foundation Trust

MRC

