Skin Containing VCA as a Monitoring Tool for Intestinal Transplantation

Annemarie Weissenbacher

Oxford Transplant Centre, Nuffield Department of Surgical Sciences, Oxford University Hospitals

Banff Meeting Barcelona March 2017

Intestinal Transplants

Oxford University Hospitals NHS Foundation Trust

Abdominal Wall Transplant

<u>Transplantation of the abdominal wall.</u> Levi et al, Lancet. 2003 Jun 28;361(9376):2173-6.

Small Bowel Transplant Abdominal Wall Transplant

Dynamic 'Canvas'

Sentinel Skin Graft Rejection

Punch Biopsy of Skin

Interface Spongiosis

Histology of Bowel

Sentinel Skin Graft after Treatment

A Case of Intrigue

- Presented with acute bowel dysfunction 25 days after the last pulse of steroids
- Stoma output > 40mls/kg/24 hours
- Abdominal wall graft was normal
- Endoscopy revealed flattening and patchy loss of villi architecture
- Histology was reported as moderate rejection

Abdominal Wall - visual

CMV Inclusion Bodies

CMV Immunohistochemistry

On-going Rejection?

- Not treated with increased immunosuppression based only on the appearance of the abdominal wall skin
- Subsequent immunohistochemistry on the bowel mucosa highly positive for CMV
- No evidence of CMV viremia
- Treated for CMV disease
- Resolution of bowel dysfunction

Lesson Learned

- The skin of the abdominal wall graft was an accurate indicator of immunologic activity in the bowel graft
- Appropriate antiviral therapy was directed after the immunohistochemistry report
- Original diagnosis of rejection was overturned by the pathologist
- Increase in immunosuppression in this case potentially would have led to either graft loss or death due to CMV

Analysis of Oxford ITx and VCA Patients

- Does the addition of a VCA increase the immunological burden?
- Does VCA increase the incidence of de novo DSA?
- Do de novo DSA have an impact on graft survival?

Pre-Transplant Nationally agreed Risk Stratification

Based on results from most recent sample

Risk level	cMFI	Risk of rejection
1	No detectable DSA	Standard risk
2	< 2,000	Low risk Minimum risk of hyperacute rejection > Standard risk of rejection
3	2,000 - 8,000	Medium risk Flow cytometry crossmatch likely to be positive Low risk of hyperacute rejection Intermediate risk of humoral rejection
	> 8,000	High risk CDC crossmatch likely to be positive High risk of humoral rejection Transplant veto, except for exceptional cases

Oxford University Hospitals NHS Foundation Trust

Laboratory Investigations

Pre-transplant HLA antibody profile

- 3 monthly or monthly if sensitised
 - Antibody screening and specificity analysis: Luminex technology
 - Identify unacceptable HLA antigens pre-transplant
 - Calculated HLA antibody Reaction Frequency (cRF%):
 % HLA incompatible, blood group compatible, UK donors in a pool of 10.000

Time of transplant: Crossmatch

- Complement dependant cytotoxicity (CDC) and flow cytometry (FC)
- Post-transplant HLA antibody monitoring
- 1,3,6,9,12 months post transplant, annually and at clinical events
 - Antibody screening and specificity analysis: Luminex technology

Oxford Transplant Cohort

- 2008 2015
 - 32 patients
 - 14 ITx without a VCA
 - 18 ITx with a VCA
 - Overall Graft Survival
 - 1 year: 86%
 - 5 years: 49%

Oxford Transplant Cohort n=32

- Sensitisation status pre transplant
 - 19 Unsensitised patients
 - 11 Standard risk, no DSA, crossmatch negative
 - 2 Higher Risk Transplants, DSA +ve
 - 1 -High risk: Bw4, DR16, DQ5, cMFI 19.000 - CDC-ve, FCXM +ve, SPA +ve
 - 1 -Medium risk: DP*04:01, cMFI 3.200
 CDC and FCXM -ve, SPA +ve

Post-transplant HLA Sensitisation Status 29 patients monitored

SENSITISATION STATUS

Transplanted Cohort

DBD

- 24 SBTx >> VCA n=12 (50%)
- 8 MMVTx >>>> VCA n=6 (75%)

Rejection

- 5 ITx rejection episodes in ITx only (5/14, 35.7%)
- **3 ITx rejection** episodes in ITx+VCA (3/18, 16.7%)
- 7 Skin rejection episodes in ITx+VCA (7/18, 38.9%)
- NO bowel rejection without skin rejection!

Donor Specific Antibodies

- Pre Tx DSA 2/32 (6.3%)
- Post Tx 14/29 (48%) developed dnDSA
 - 4 class I alone
 - 3 class II alone
 - 7 class I & class II
 - Mean MFI of class I dnDSA: 7628±10661 SD
 - Mean MFI of class II dnDSA :10721±18657 SD

Post Transplant Sensitisation

De novo DSA post transplant

Graft Survival stratified for de novo DSA

Results of the univariate Cox regression analysis to evaluate predictors for graft survival

Characteristic	Wald	HR	95% CI	<i>p</i> value
Recipient Factors				
Age at Tx	4.766	1.061	1.006 - 1.118	0.029
Donor Factors				
BMI donor	4.864	1.568	1.051 - 2.338	0.027
Transplant Factors				
VCA included	0.178	1.331	0.352 - 5.036	0.673
Existence of dnDSA				
dnDSA class I	0.240	0.577	0.064 - 5.200	0.624
dnDSA class II	3.263	4.247	0.884 - 20.391	0.071
dnDSA class I+II	7.877	14.839	1.016 - 22.362	0.048
dnDSA max MFI levels	3.384	1.000	1.000 - 1.000	0.066
dnDSA class I MFI levels	0.849	1.000	1.000 - 1.000	0.357
dnDSA class II MFI levels	3.487	1.000	1.000 - 1.001	0.062

Oxford University Hospitals MHS NHS Foundation Trust

Results of the multivariate Cox regression analysis to evaluate independent predictors for long term graft survival

Characteristic	Wald	HR	95% CI	p value
Recipient age at Tx	7.668	1.189	1.052 - 1.344	0.006
Existence of dnDSA	8.135			0.043
dnDSA class I	2.207	6.107	0.300 - 124.326	0.137
dnDSA class II	1.705	7.028	0.376 – 131.216	0.192
dnDSA class I+II	7.912	45.306	3.178 – 645.875	0.005

Summary

Skin containing VCA seems to be a future leader for diagnosis of rejection – sentinel skin

Combining an intestinal transplant with an abdominal wall VCA does not increase the incidence of *de novo* DSA

Multivariate analysis showed that the development of *de novo* DSA in intestinal transplantation is detrimental to the long-term survival of the graft

Questions

What are the next steps?

Do we have to treat as soon as we diagnose de novo DSA? Which organ leads the decision?

What are the treatment options?

Thank You

Oxford Transplant Centre – Prof. Peter Friend

Transplant Immunology Laboratory – Prof. Susan Fuggle

Plastic, Reconstructive and Hand Surgery – Mr Henk Giele

