cfDNA in Heart Transplantation: A Powerful Biomarker

Kiran K. Khush, MD, MAS
Associate Professor of Medicine
Division of Cardiovascular Medicine
Stanford University School of Medicine

BANFF-SCT Joint Symposium Barcelona, March 2017

Faculty / Presenter Disclosure

- Faculty: Kiran K. Khush, MD, MAS
- Relationships with commercial interests:
 - Consulting Fees: CareDx, Inc.

Mitigating Potential Bias

 Only work that has been published and/or discussed at scientific meetings will be presented.

Cell free donor DNA as a marker of acute rejection

Preliminary Results: Heart Transplant

Heart transplant: prospective study design and numbers

Dd-cfDNA in the absence of rejection

Elevated signal immediately post transplant followed by a quick decay (decay time 2.4 days) to a low baseline level

Dd-cfDNA at the time of acute cellular rejection

Dd-cfDNA at the time of acute cellular and antibodymediated rejection

Dd-cfDNA in a case of graft loss and re-transplantation

Dd-cfDNA: analysis of diagnostic performance

Analysis of diagnostic performance

Early diagnosis and monitoring of therapeutic response

Replication/Reproducibility Studies

NHLBI - Genomic Research Alliance for Transplantation (GRAfT)

Replication/Reproducibility Studies

dd-cfDNA: A Rapidly Evolving Technology

- Technology used in previous studies to measure SNP alleles:
 - Shotgun sequencing methods (Stanford) (1)
 - Targeted amplification (Wisconsin, Chronix) (2)
 - Both requiring recipient AND donor genotypes
- A new approach has been developed (CareDx, Inc: AlloSure™) with targeted amplification of SNPs (n=266) that DOES NOT require genotyping of the donor or recipient (3)
- "One genome" informatics algorithm (4)

```
(1) Snyder et al., PNAS 108(15):6229, 2011
De Vlaminck et al., Sci Transl Med. 6(241):241, 2014
```

(2) Beck et al., Clin Chem 59:12, 2013 Hidestrand et al., JACC 63:1224, 2014

nidestrand et al., JACC 63.1224, 2012

- (3) Grskovic et al, Jol Mol Diagnostics, Nov 2016
 - (4) Sharon et al. Submitted for publication

CARGO II: Retrospective Analysis of dd-cfDNA (AlloSure™) in acute heart transplant rejection

CARGO II observational study: Heart transplant recipients from 17 centers; 737 patients, 7977 samples

Clinical status, including endomyocardial biopsy grades (graded by four independent pathologists) and blood were collected at routine surveillance visits for up to two years.

Rejection (R) cohort

-2/4 pathologists graded sample as 2R or 3R

N=58 patients

Selection for cfDNA Analysis

- -blood drawn prior to biopsy
- at least one preceding sample available

N=28 patients

Study of Treatment Effect

-3 visits per patient (two subsequent to rejection within 60 days)

N=17 patients

Quiescent (Q) cohort

-4/4 pathologists graded sample as OR

N=249 patients

Selection for cfDNA Analysis

- blood drawn prior to biopsy
- no rejection treatment
- steroid dose < 20 mg
- at least 2 preceding samples available
- patients matched with the R set for race, age

N=26 patients

Increased dd-cfDNA Levels Correlate with Acute Rejection in Heart Transplant Recipients

Crespo-Leiro, ISHLT 2015

dd-cfDNA tends to increase within one month prior to acute rejection

Days prior to rejection

dd-cfDNA Levels Decrease Following Rejection Treatment

 \mathbf{J} = Rejection treatment

Conclusions

- Donor-derived cell-free DNA is an informative pan-organ noninvasive marker of acute rejection after solid organ transplantation.
- Dd-cfDNA may enable clinicians to non-invasively distinguish acute rejection from other post-transplant complications
- Measurement of serial dd-cfDNA levels may permit earlier detection of acute rejection, before graft damage/dysfunction occurs.
- dd-cfDNA levels reliably fall after treatment of acute rejection
- Early measurements of dd-cfDNA may identify transplant recipients at risk of chronic graft injury

The challenge of post-transplant therapy

The therapeutic window is narrow, and can vary between patients. Sometimes rejection and infection can present in similar ways.

Non-human DNA is also present in plasma

Relative genomic abundance

The anelloviridae fraction is primarily composed of viruses from the alphatorque genus.

Immunosuppressants and antivirals alter structure of the virome

Virome temporal dynamics

Virome temporal dynamics

Virome temporal dynamics

Anellovirus load for rejecting vs non-rejecting recipients

Anellovirus load for rejecting vs nonrejecting recipients

Can anellovirus load be used as a marker of a patient's net state of immunosuppression?

1.0

Correlation between shotgun sequencing and clinical lab results

Non-Biased Detection of Specific Pathogens

Conclusions

- cfDNA sequencing can be used to study the microbiome, and changes over time
- Structure of the virome is strongly affected by immune modulation and antivirals.
- The total viral load increases markedly at the onset of immunosuppressive therapy.
- Anellovirus load allows stratification of rejecting and non-rejecting recipients.
- Non-biased sequencing of the virome may enable diagnosis of infectious complications

Future Directions

- D-OAR: Prospective registry study of AlloSure™ assay to study test performance
 - 23 heart transplant centers
 - ~700 study subjects and ~2500 samples collected as of this week
 - Transition from research-grade to clinical-grade testing will facilitate adoption for patient management

Future Directions

- Mitochondrial cfDNA as a marker of acute rejection after transplantation (DeVlamick, Cornell)
- Other sample types
 - Fingerprick blood samples point of care diagnostics
 - cfDNA in urine to monitor infections and rejection
- Identifying the tissues of origin of cell-free DNA
 - Genome-wide methylation patterns
 K. Sun, D. Lo, PNAS, 2015
 - Patterns of nucleosome and transcription factor occupancy
 M. Snyder, J. Shendure, Cell, 2016

Acknowledgments

Stanford

Stephen Quake, Thomas Snyder, Dan Bernstein, Helen Luikart, Calvin Strehl, Garrett Cohen, Jennifer Wylie, Michelle Yu, Jennifer Okamoto, Norma Neff, Lolita Penland, John Schroeder

GRAfT consortium at NIH

Hannah Valantine, Sean Agbor-Enoh

Cornell

Iwijn DeVlaminck

CareDx

Jim Yee, John Sninsky, Marica Grskovic, Robert Woodward, David Hiller

