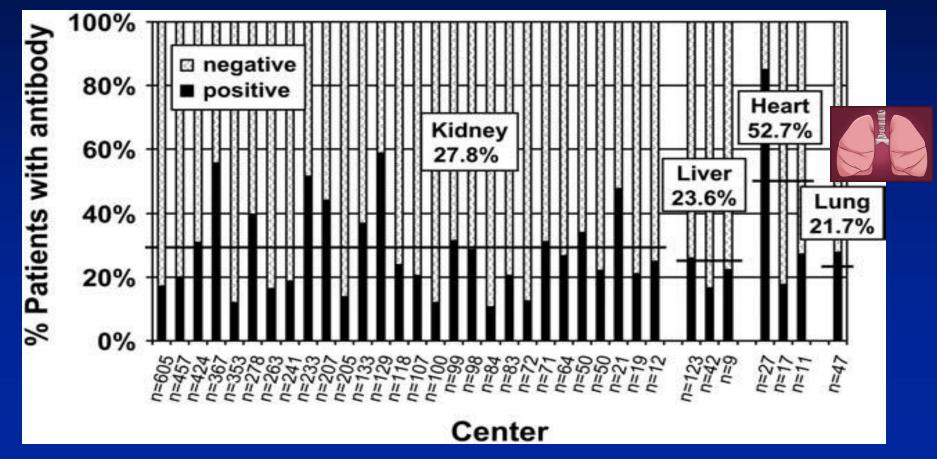
2017 BANFF-SCT Joint Scientific Meeting BARCELONA 27-31 March 2017

Impact of Donor Specific HLA Antibodies on Lung Allograft


Adriana Zeevi PhD (D) ABHI
Professor of Pathology, Surgery and Immunology
Director of Histocompatibility Laboratory
University of Pittsburgh Medical Center

14th International HLA and Immunogenetics Workshop: Report on the prospective chronic rejection project (Ozawa et al Tissue Antigens 2007)

Frequency of human leukocyte antigen antibodies post-transplant by organ, n = 5219.

Impact of Preformed HLA-Ab

Panel Reactive Antibody (PRA) detected by cell based methods (pre 2010)

- Influence of PRA on post-transplant outcomes in LTx recipients Lau et al Ann Thorac Surg 2000 (n=200 LTx, method CDC)
 - Sensitized LTx experienced more acute and chronic complications after LTx (BOS 56% vs. 23 %).
- Pretransplant PRA in LTx is associated with significantly worse post-transplant survival in a multicenter study Hadjiliadis et al JHLT 2005 (n=656 LTx, method CDC)
 - Patients with PRA >25% had decreased median survival at 1 month,
 1 and 5 years (at 5 years 31% vs. 50%).
- Pretransplant PRA in human LTx: an analysis of over 10,000 patients. Shah et al Ann Thorac Surg 2008 (method CDC)
 - UNOS database from 1995-2008, PRA >25 % associated with increased mortality, this effect was not seen in more recent era.

Based on PRA using PBMC: only class I HLA-Abs were considered and no information on donor-specific HLA antibodies

Impact of Preformed HLA-Ab

PRA and DSA detected by solid-phase methods (after 2010)

- Lung transplantation in patients with pre-transplantation donor-specific antibodies (DSA) detected by luminex assay Brugiere et al Transplantation 2013 (n=56)
 - Freedom from BOS and survival was lower in patients with pre-formed HLA class
 II DSA vs. patients with HLA class I DSA or without DSA.
- Impact of pre-transplant anti-HLA antibodies on outcomes in LTx candidates. Kim et al Am J of Resp and Crit. Care 2014 (n=224)
 - The presence of HLA-Ab at >3000 MFI was associated with lower transplant rate and higher AMR rate as compared with patients with lower threshold HLA-Abs.
- Pre-transplant donor HLA-specific antibodies: characteristics causing detrimental effects on survival after lung transplantation. Smith et al JHLT 2014 (n=425)
 - Complement fixing pre-formed DSA and high MFI were associated with poor survival within the first year post LTx.

determination by single antigen bead assay correlated with poor outcome

The Journal of Heart and Lung Transplantation

http://www.jhltonline.org

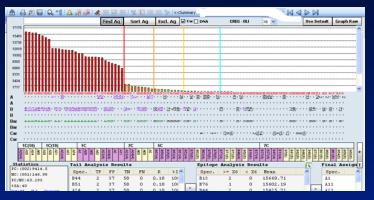
ISHLT CONSENSUS REPORT

Antibody-mediated rejection of the lung: A consensus report of the International Society for Heart and Lung Transplantation

Deborah J. Levine, MD,^a Allan R. Glanville, MBBS, MD,^b Christina Aboyoun, BA, MBA,^b John Belperio, MD,^c Christian Benden, MD, FCCP,^d Gerald J. Berry, MD,^e Ramsey Hachem, MD,^f Don Hayes Jr., MD, MS,^g Desley Neil, MBBS, PhD,^h Nancy L. Reinsmoen, PhD, D(ABHI),ⁱ Laurie D. Snyder, MD,^j Stuart Sweet, MD, PhD,^f Dolly Tyan, PhD,^e Geert Verleden, MD, PhD,^k Glen Westall, MBBS, PhD,^l Roger D. Yusen, MD, MPH,^f Martin Zamora, MD,^m and Adriana Zeevi, PhDⁿ

From the ^aPulmonary Disease and Critical Care Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA; ^bThe Lung Transplant Unit, St. Vincent's Hospital, Sydney, New South Wales, Australia; ^cPulmonary Disease and Critical Care Medicine, University of California, Los Angeles, California, USA; ^dDivision of Pulmonary Medicine, University Hospital Zurich, Zurich, Switzerland; ^eDivision of Pathology, Stanford University Medical Center, Palo Alto, California, USA; ^fDivision of Pulmonology, Washington University, St. Louis, Missouri, USA; ^gDepartment of Pulmonology, The Ohio State University, Columbus, Ohio, USA; ^hDepartment of Pathology, Queen Elizabeth Hospital, Birmingham, UK; ⁱDepartment of Immunology, Cedars-Sinai Hospital, Los Angeles, California, USA; ^jDepartment of Pulmonology, University, Durham, North Carolina, USA; ^kDepartment of Pulmonology, University Hospitals Leuven, Leuven, Belgium; ^lDepartment of Pulmonology, Alfred Hospital, Melbourne, Victoria, Australia; ^mDepartment of Pulmonology, University of Colorado, Denver, Colorado, USA; and the ⁿDepartment of Immunology, University of Pittsburgh, Pennyslvania, USA.

Key criteria:


Presence of DSA

Lung Histology

HLA-Ab Testing

Single Antigen Bead

Specificty DSA

Risk Assessment for AMR
Persistent DSA- Monitoring
Increase Titer -Ab Burden
Complement Binding- IgG Subtype

$MFI \neq TITER$

Determining Antibody Strength

Table 2: Comparison between neat MFI values of several HLA-DQ antibody specificities with the corresponding MFI values as the serum was diluted, in a patient presenting with AMR and in need for antibody removal therapy

			Neat MFI			
Bead ID	Neat	1:4	1:16	1:64	1:256	1:1024
1	15 785	14 736	11 846	6688	2276	644
2	14718	12 654	10 533	6119	2100	577
3	14619	17 645	16 283	9755	3473	1072
4	13 993	12 512	10 202	5818	1693	355
5	12 392	11 235	8875	4637	1445	377
6	11 184	17 457	16734	9371	3342	1007
7	10 995	17 359	15 605	8692	2886	896
8	10 606	5514	2162	448	21	0
9	8942	3953	1066	117	0	0
10	8227	3417	1018	74	0	0
1	DQA1*03:01/DQB1*02:01			6	DQA1*03:02	/DQB1*03:03
2	DQA1*03:01/DQB1*03:01			7	DQA1*03:02/DQB1*03:02	
3	DQA1*03:03/DQB1*04:01			8		VDQB1*06:01
4	DQA1*03:01/DQB1*03:03			9	DQA1*01:03	VDQB1*06:03
5	DQA1*03:01/DQB1*03:02			10		/DQB1*06:09

AMR, antibody-mediated rejection; MFI, mean fluorescence intensity.

DSA bead 6 and 8 show the same neat MFI- during AMR very different titers and required treatment- the kinetics of response to removal therapy different

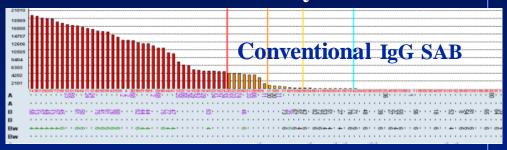
C1q Screen

New approaches for detecting complement-fixing antibodies

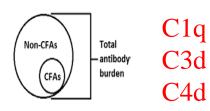
Dolly B. Tyan

Histocompatibility

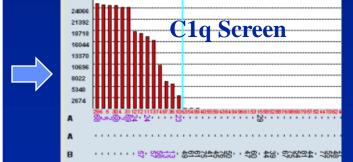
KEY POINTS


- Complement-fixing capability of HLA antibodies can be determined using C1q and C4d solid phase assays.
- The C1q assay has high sensitivity and specificity.
- The IgG mean fluorescence intensity (MFI) cannot be used to predict which antibodies can fix complement.
- C1q+ donor-specific antibody correlates with antibody mediated rejection and graft loss in kidney and heart transplant recipients.
- The C1q assay can be used to predict and monitor resolution of antibody mediated rejection (AMR) in heart transplant patients.
- The C1q assay can be used to predict and monitor desensitization by intravenous immunoglobulin (IVIG)

Challenges and Opportunities in Pediatric Heart Failure and Transplantation


Transplantation in the Highly Sensitized Pediatric Patient

Chesney Castleberry, MD; Thomas D. Ryan, MD, PhD; Clifford Chin, MD


Total Antibody Burden

Complement Fixing IgG

Figure. The total antibody burden present in a sensitized patient is composed of non–complement fixing antibodies (Non-CFAs) and complement fixing antibodies (CFAs).

Review Article

From Humoral Theory to Performant Risk Stratification in Kidney Transplantation

C. Lefaucheur,^{1,2} D. Viglietti,^{1,2} M. Mangiola,³ A. Loupy,^{1,4} and A. Zeevi³

Journal of Immunol Research 2017

HLA-Ag	T IgG	C1q	IgG1	IgG2	IgG3	IgG4	
B53	14522	1247	5280	2023	1022	19999	
B51	13778	949	4239	2195	1079	20023	K
DQ5	16026	20787	14030	5668	26	8066	
DQ6	16639	22113	14577	6045	20	9009	
A32	13967	11	5498	1615	0	0	
A23	11440	89	4733	1413	40	0	ŀ
DR12	11741	30	3864	89	0	5	

C1q+

C1q-

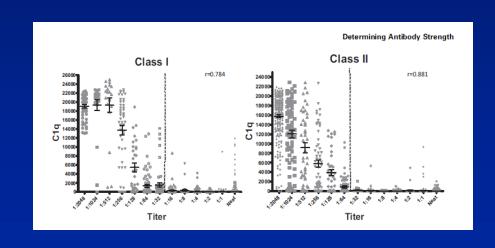
C1q Reactivity was not predicted by total IgG MFI

Table 1: Correlation between different approaches currently used to assign antibody strength, for different HLA loci						
Correlation	HLA-A	HLA-B	HLA-C	HLA-DR	HLA-DQ	HLA-DP
C1q vs. Neat C1q vs. Peak	0.395 0.820	0.529 0.779	0.484 0.750	0.788 0.856	0.344 0.660	0.197 0.689
C1q vs. Feak C1q vs. Titers	0.709	0.830	0.911	0.891	0.870	0.083

Tambur AJT 2015

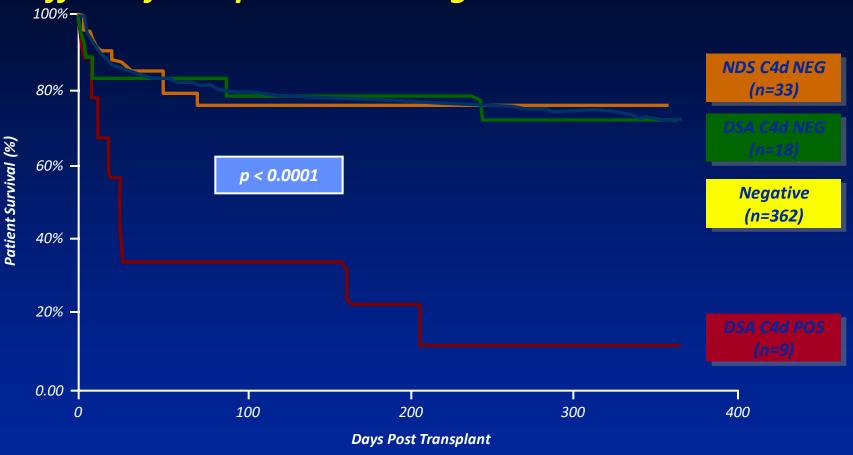
Complement Binding HLA-Ab Characteristics

C1q Screen Positive


Relative Ratio of IgG subtype: CF: IgG1 and IgG3

NCF: IgG2, IgG4

Level of IgG: Titer > 1:16 to 1:32


COMPLEMENT FIXING ABILITY OF DSA	IgG SUBCLASS OF DSA	MICROVASCULAR INFLAMMATION	INFLAMMATORY CELLS PRESENT	TIME TO INDUCE GRAFT DAMAGE
	lgG4	+	MONOCYTES	LONG
C1Q NEG	lgG2	+	MONOCYTES	LONG
C40 P0C	lgG1	***	NK CELLS, MONOCYTES	MODERATE
C1Q POS	lgG3	****	NK CELLS, MONOCYTES	SHORT

Hidalgo Tambur 2015

Pretransplant DSA Characteristics Causing Detrimental Effects on Survival after Lung Transplantation:

Effect of Complement-Fixing DSA on Patient Survival

Conclusion: Complement-fixing DSA had significantly lower 1-year survival (11.1%) than DSA that do not fix complement (72.2%).

Smith et al, JHLT 33(10): 1074, October 2014 Courtesy Dr Reinsmoen

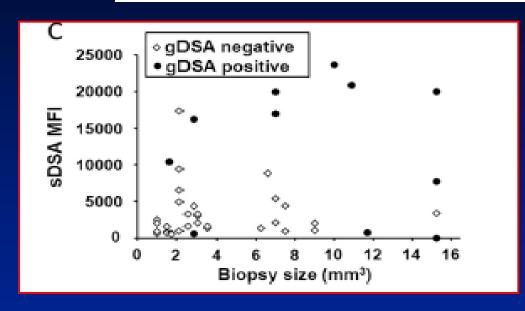
The Histopathology of Lung Allograft Dysfunction Associated with the Development of DSA

Yousem and Zeevi, American Journal of Surgical Pathology. 2012; 36:987

Post LTx de-novo DSA is 72% DQ-specific (DQB, DQA and DQB/DQA pairs)

Lung Phenotype	ACR	DSA	Complement Fixing (C1q)
ACR/AMR	Refractory/ Persistent post IST*	De-novo Rising Titer	Positive Persistent
ACR	Response to IST*	Transient	Negative/ Transient

* IST- Immunosuppression Treatment


Donor-Specific Class II <u>HLA-DQ</u> Complement Binding Antibody Are Associated with Severe Rejection in Lung Transplantation

Lobo et al JHLT 2013: DSA are associated with AMR, ACR, BOS after LTx

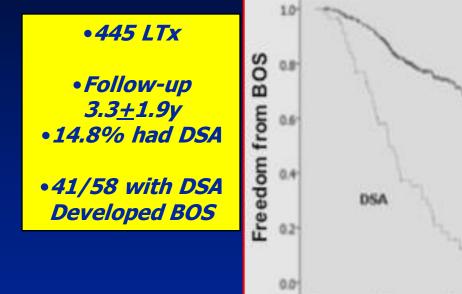
Lung intragraft donor-specific antibodies as a risk factor for graft loss

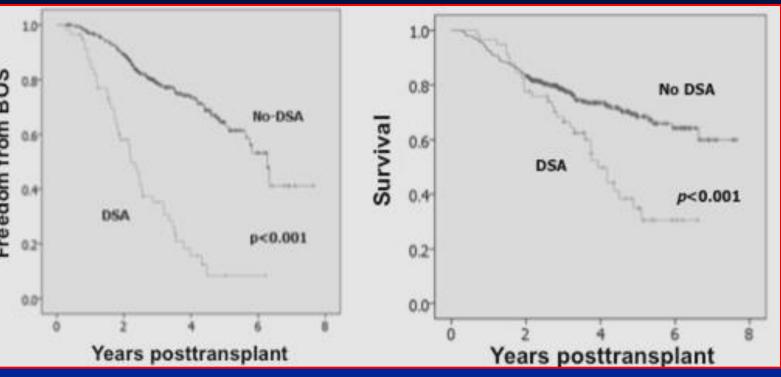
Jonathan Visentin, PharmD, PhD, a,b Albane Chartier, MD, Layal Massara, Gabriel Linares, Gwendaline Guidicelli, PharmD, PhD, Elodie Blanchard, MD, Marie Parrens, MD, PhD, Hugues Begueret, MD, Claire Dromer, MD, and Jean-Luc Taupin, PharmD, PhD, PhD, b

Link between serum MFI, biopsy fragment size and gDSA

> 7/11 >10,000 MFI 8/11 > size 6 mm³

28 LTx sDSA (50 DSAs) 28% Class I (6A, 2B, 6C) 72% Class II (8DR, 22DQ, 4DP)


15 sDSA C1q + (1DR, 14 DQ) 15 gDSA (4 Class I, 1DR, 10 DQ)


1/15 gDSA in the biopsy only

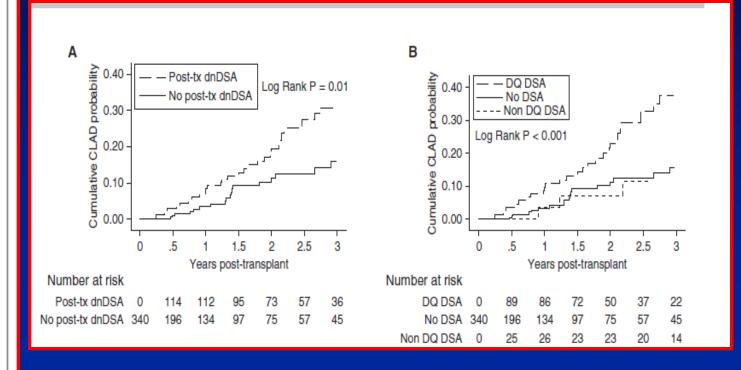
Only 1 LTx had C4d+ biopsy 45.5% had ACR 36.4% had BOS (prior biopsy)

De novo DSA are associated with early and high grade BOS and death after LTx

Morrell et al JHLT 2014

Safavi et al JHLT 2014: de novo DSA predict development of BOS after LTx Ius et al JHLT 2014: DSA in Ltx risk factors and impact on survival Witt et al JHLT 2013: Acute antibody mediated rejection after LTx

De Novo DQ Donor-Specific Antibodies Are Associated with Chronic Lung Allograft Dysfunction after Lung Transplantation

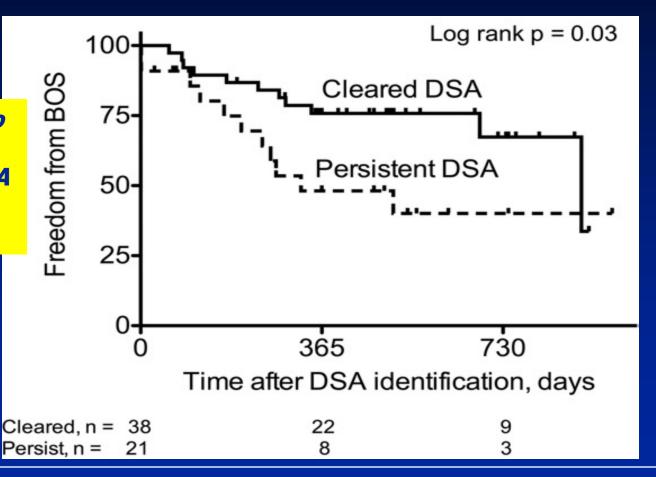

Jussi M. Tikkanen¹, Lianne G. Singer¹, S. Joseph Kim², Yanhong Li², Matthew Binnie¹, Cecilia Chaparro¹, Chung-Wai Chow¹, Tereza Martinu¹, Sassan Azad¹, Shaf Keshavjee¹, and Kathryn Tinckam^{2,3}

At a Glance Commentary

Scientific Knowledge on the Subject: Increasing evidence suggests that donor-specific antibodies may play a role in development of chronic lung allograft dysfunction.

What This Study Adds to the Field: This study demonstrates that post-transplant de novo donor-specific human leukocyte antigen (HLA) antibodies (dnDSA) are common and occur early after lung transplantation and before chronic lung allograft dysfunction (CLAD). The number of HLA DQ mismatches between donor and recipient is the strongest independent predictor of dnDSA development. HLA-DQ dominates dnDSA specificity and independently drives the association with CLAD.

The impact and temporal relationship of dnDSA and DQ specific DSA on chronic allograft dysfunction (CLAD)


American Journal of Respiratory and Critical Care Medicine Volume 194 Number 5 | September 1 2016

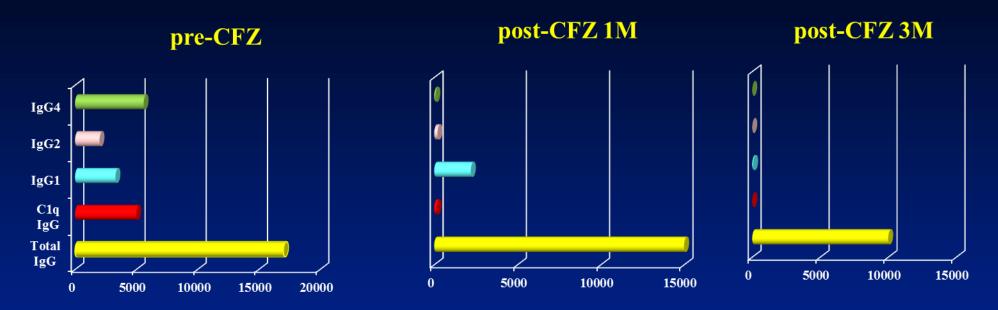
Implications for Human Leukocyte Antigen Antibodies After Lung Transplantation A 10-Year Experience in 441 Patients

- HLA antibodies after lung transplant are associated with
 - increased risk for BOS and worse survival,
 - DSA is associated with worse survival.
- HLA antibodies appear to be an integral part of the immune response to the allograft both preceding graft dysfunction and after allograft dysfunction.
- A key question to address in further analysis is if the decrease or elimination of these antibodies correlates with improved outcomes

Anti-human leukocyte antigen antibodies and preemptive antibody-directed therapy after lung transplantation

BOS was more likely to develop in recipients who had persistent DSA than in those who cleared the DSA.

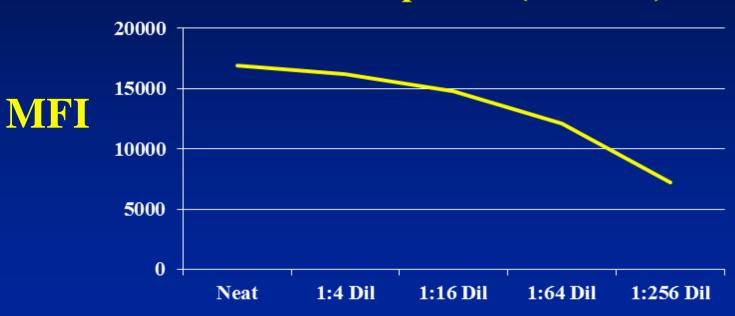
Ramsey R. Hachem, MD, et al J Heart Lung Transplant 2010;29:973-80

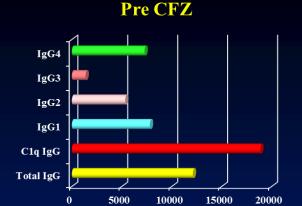

Proteasome Inhibitor Carfilzomib-Based Therapy for Antibody-Mediated Rejection of the Pulmonary Allograft: First Use and Short-Term Findings

Ensor, Zeevi, McDyer AJT 2017

16pts (23 iDSA): 69% DQ, 19% DQ+DR, 12% DR 6 patients had C4d+ AMR, 10 patients C4d- probably AMR

CFZ-based therapy resulted in profound depletion of circulating iDSA, removal of DSA C1q-fixing ability *in vitro*, a high degree of responsiveness, and stabilized or recovered lung allograft function.


Carfilzomib Responder :Loss of DSA C1q Reactivity Pt1 DSA DQB1*04:02/DQA1*04:01

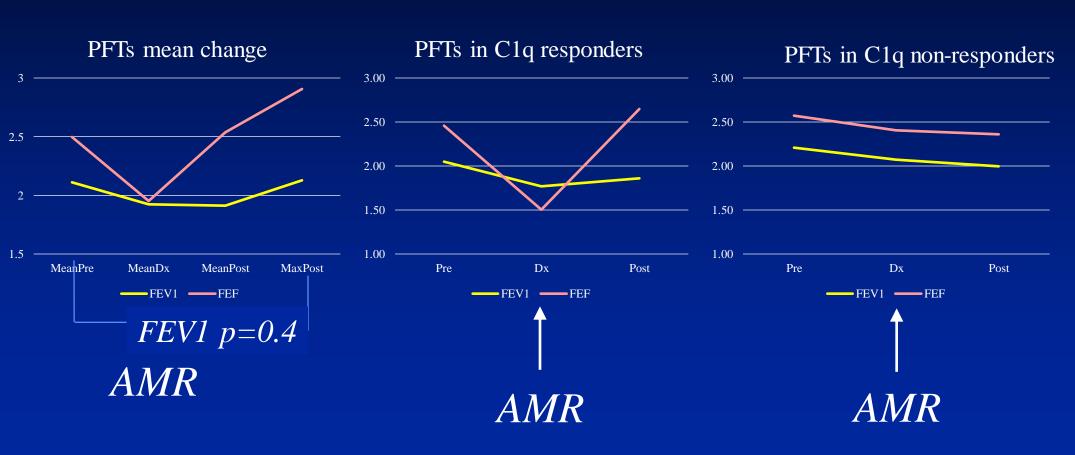

- 1.Total IgG MFI Persisted (yellow bar)
- 2. Loss of C1q Reactivity (red bar)
- 3. Drop in level of IgG Subtypes (IgG1 blue, IgG2 pink and IgG4 green)

DSA Titer Pre AMR Treatment Immuno-dominant DSA DQB1*04:02/DQA1*04:01

Pre CFZ Drop DSA (dilution)

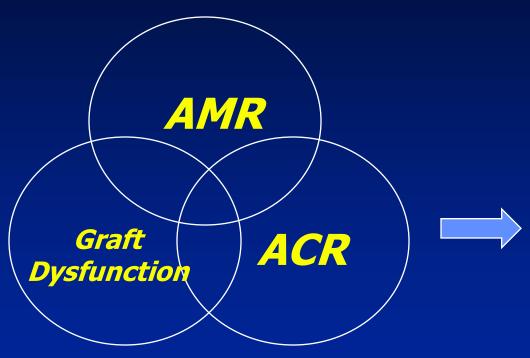
iDSA was <2000 MFI at 1:2048 titer

LTx Non Responder High Titer DSA Pre-AMR Persisted post Treatment



High Titer DSA Pre-CFZ

iDSA was >10,000 MFI at 1:2048 titer


PFT Recovery after Carfilzomib-Based AMR Therapy

Courtesy of Chris Ensor PharmD

Impact of DSA in LTx

Antibody rejection in lung transplantation: Myth or reality?

Allan Glanville JHLT 2010; 29

Consensus Report AMR in LUNG Tx

2017

The Journal of Heart and Lung Transplantation

http://www.jhltonline.org

ISHLT CONSENSUS REPORT

Antibody-mediated rejection of the lung: A consensus report of the International Society for Heart and Lung Transplantation

Deborah J. Levine, MD,^a Allan R. Glanville, MBBS, MD,^b Christina Aboyoun, BA, MBA,^b John Belperio, MD,^c Christian Benden, MD, FCCP,^d Gerald J. Berry, MD,^e Ramsey Hachem, MD,^f Don Hayes Jr., MD, MS,^g Desley Neil, MBBS, PhD,^h Nancy L. Reinsmoen, PhD, D(ABHI),ⁱ Laurie D. Snyder, MD,^j Stuart Sweet, MD, PhD,^f Dolly Tyan, PhD,^e Geert Verleden, MD, PhD,^k Glen Westall, MBBS, PhD,^l Roger D. Yusen, MD, MPH,^f Martin Zamora, MD,^m and Adriana Zeevi, PhDⁿ

From the "Pulmonary Disease and Critical Care Medicine, University of Texas Health Science Center San Antonio, San Antonio, Texas, USA; b"The Lung Transplant Unit, St. Vincent's Hospital, Syshey, New South Wales, Australia; "Pulmonary Disease and Critical Care Medicine, University of California, Los Angeles, California, USA; "Division of Pulmonary Medicine, University Hospital Zurich, Switzerland; "Division of Pathology, Stanford University Medical Center, Palo Alto, California, USA; "Division of Pulmonology, Washington University, St. Louis, Missouri, USA; "Department of Pulmonology, The Ohio State University, Columbus, Ohio, USA; "Department of Pathology, Queen Elizabeth Hospital, Birmingham, UK; "Department of Immunology, Cedars-Sinai Hospital, Los Angeles, California, USA; "Department of Pulmonology, University Hospitals Leuven, Leuven, Belgium; "Department of Pulmonology, Alfred Hospital, Melbourne, Victoria, Australia; "Department of Pulmonology, University of Pittsburgh, Pütsburgh, Pennyslvania, USA.

Acknowledgments

Tissue Typing
Laboratory
Dr Massimo Mangiola

Pulmonary Medicine Chris Ensor Pharm D

Clinical Associates
Renal, Heart, Lung, Liver Team
Adult and Pediatric

