

Do we need different scoring rules in early and late allograft biopsies?

Maarten Naesens, MD PhD University of Leuven, Belgium

Banff meeting, Barcelona 2017

Disclosures

Consultancy:

- Galapagos
- Roche
- Novartis
- Sanofi

I will not discuss off-label use of therapeutics

Do we need different scoring rules in early and late allograft biopsies?

Maarten Naesens, MD PhD University of Leuven, Belgium

Banff meeting, Barcelona 2017

- 1) Is time post-transplant relevant in kidney transplant histology?
- 2) Do we need different scoring rules in early vs. late allograft biopsies?

Kidney allograft histology is time-dependent

Acute lesions disappear over time Chronic lesions accumulate over time

Later IF/TA associates with prior TCMR, in univariate analyses

Demonstration that microcirculation inflammation precedes later cg

	TG with Ab/C4d	TG with no Ab/C4d
n	33	12
Glomerulitis, mean score ¹	$0.7 \pm 0.8**$	0.2 ± 0.6
Peritubular capillaritis, mean score ¹	$1.7 \pm 1.0*$	1.0 ± 1.1
Peritubular capillaritis, extent ¹		
Absent, n (%)	7 (21)	6 (50)
Present, n (%),	26 (78)*	6 (50)
Diffuse/Focal, n	7/19	4/2
Inflammatory cell type, n		
MN cells only	10 of 26	1 of 6
Neutrophils (<50%) and MN cells	16 of 26	3 of 6
Neutrophils (>50%) and MN cells	0	2 of 6
PTC dilatation, n (%)	15 (45)	5 (42)

Low-risk groups have late ABMR while TCMR occurs mostly early post-transplant

Intermediate risk patients have a different prevalence of histologic lesions over time

The complexity of a biopsy is time-dependent: early biopsies are less complex, later more

Number of acute vs chronic diagnoses and timing postTX

Time after transplantation

Timing of the biopsy associates with outcome

Time after transplantation associates with post-biopsy survival in univariate analysis

Time after transplantation associates with post-biopsy survival in univariate analysis

The predictive accuracy of biopsy time is comparable to that of eGFR or proteinuria

The predictive accuracy of biopsy time is comparable to that of eGFR or proteinuria

1) Is time post-transplant relevant in kidney transplant histology?

2) Do we need different scoring rules in early vs. late allograft biopsies?

How Dr. Colvin sees the Banff classification moving towards "precision pathology":

- For mechanistic insight
- For choice of treatment
- Follow-up of treatment effect
- As surrogate endpoint

How I see the Banff classification moving towards "precision pathology":

- For mechanistic insight
- For diagnosis (ABMR; TCMR; PVAN; IFTA; NL; GNF; etc.)
- To decide which patients with these diagnoses to treat
- For choice of treatment
- Follow-up of treatment effect
- As surrogate endpoint

How a simple clinician like me uses the Banff classification in his routine clinical practice:

- (For mechanistic insight)
- For diagnosis (ABMR; TCMR; PVAN; IFTA; NL; GNF; etc.)
- To decide which patients with these diagnoses to treat
- For choice of treatment (but currently purely based on the diagnosis)
- (Follow-up of treatment effect)
- (As surrogate endpoint)

A clinician's view

- Histology
- Molecules? Combination

A clinician's view

A clinician's Patients with confirmed disease - Histology - Molecules? view Combination **Prognostic markers/model Predictive markers/model** Start treatment X

A clinician's Patients with confirmed disease - Histology - Molecules? view Combination Prognostic **Prognostic markers/model** Low risk / good High risk / bad Start treatment X

A clinician's view

Prognostic markers/model

Dr. Stegall at Banff 2017 pre-meeting: "The enrollment criteria are as important as the endpoints!"

Is time post-TX important for TCMR prognosis?

The timing of TCMR (grade 1-2) diagnosis seems important for prognosis

The timing of TCMR (grade 1-2) diagnosis seems important for prognosis

Early TCMR (< 3 months) grade 1-2 has no effect on graft outcome

Later TCMR grade 1-2 and IFTA have cumulative effects on outcome

Later TCMR grade 1-2 and IFTA have cumulative effects on outcome

Is time post-TX important for ABMR prognosis?

The timing of ABMR diagnosis seems important for prognosis

The timing of DSA occurrence seems important for prognosis

Transplant glomerulopathy has an effect on ABMR outcome

Transplant glomerulopathy has an effect on ABMR outcome

Multivariate models for disease prognosis

iBox provides a prognostic nomogram, but is not (yet) disease-specific

In biopsies with TCMR, concomitant PVAN and IFTA, and timing of the biopsy, drive outcome

In a multivariate Cox model (N=467 TCMR grade 1-2 biopsies)

we retain:

- Time after transplantation (< vs. > 3 months; HR 3.97, p < 0.001)
- Concomitant PVAN
- IFTA grade
- eGFR

In biopsies with ABMR, concomitant cg but also timing of DSA, drive the outcome

Table 4. Factors associated with kidney allograft loss in the multivariate analysis

Factors		No. of patients	No. of events	HR	95% CI	P Value
GFR, ml/min per 1.73 m ²	≥60	29	8	1	_	
	30–60	105	37	1.30	(0.60 to 2.82)	
	<30	60	32	3.27	(1.48 to 7.23)	< 0.001
Proteinuria, g/g creatinine	< 0.30	96	22	1	_	
	≥0.30	98	55	2.44	(1.47 to 4.09)	< 0.001
DSA characteristic	Preexisting DSA	101	28	1	_	
	De novo DSA	93	49	1.82	(1.07 to 3.08)	0.03
Transplant glomerulopathy	Low score: 0	109	29	1	_	
(cg) score	High score ≥1	85	48	2.25	(1.34 to 3.79)	0.002

Why is time post-transplant so important for prognosis?

- Reflects pathophysiology of the disease:
 - Tubulo-interstitial inflammation "TCMR":
 - early = non-specific ischemia reperfusion injury, wound healing etc.
 - late = donor-specific allo-immune phenomena; insufficient immunosuppression; nonadherence etc.
 - ABMR: de novo vs. pretransplant DSA different (class; MFI etc.)?
- Time is often a proxy of chronicity (and reversibility) of the diseases
 (late = more often ongoing for a long time; chronic injury)
- Organ functional reserve/regenerative capacity?

1) Is time post-transplant relevant in kidney transplant histology?

2) Do we need different scoring rules in early vs. late allograft biopsies?

1) Is time post-transplant relevant in kidney transplant histology?

2) Do we need different scoring rules in early vs. late allograft biopsies?

After a diagnosis, if further validated, time post-transplantation could be used for disease prognosis.

Usefulness of a two-step diagnostic + prognostic Banff classification:

- Streamline <u>inclusion/exclusion criteria</u> for study entry based on these prognostic categories ("enrichment of the patient population", see Dorry Segev)
- Allow <u>Banff-predefined subgroups for post-hoc analyses</u> of interventional trials
- Build <u>routine clinical protocols based on the prognostic</u>
 <u>categories</u>, instead of center-specific or even doctor-specific patient stratification for therapy.

Thank you!

maarten.naesens@uzleuven.be evelyne.Lerut@uzleuven.be