

Present and future of regenerative medicine

Liver Transplantation

Mireia Caralt, MD PhD Servei Cirurgia HBP i Trasplantaments March 19, 2015

Solid organs: structural complexity!!

Ideal scaffold: biocompatibility, biodegradability, porosity, structural support

Artificial Scaffold

 Difficult control of size, microarchitecture and interconnectivity of pores

Natural Scaffold

Organ

Extracellular Matrix

- Physical, chemical and molecular stimuli that enable cell engraftment
- Preservation of vascular network
- Low inmunogenicity

Table 1. Studies in the literature

Author	Type Cells	Infusion Method	Via	Number Cells	Flow Rate	Time
Baptista 2010	hUVEC hFLC MS1	Continuous	PV IVC, PV, IVC+PV	30x10 ⁶ 70 x10 ⁶ 100 x10 ⁶	3ml/min → 0.5ml/ min 5ml/min	7d 3d
Uygun 2010	Rat MH Endothelial cells	Multistep	PV	200 x10 ⁶	15ml/min	5d 5d
Soto 2011	Rat MH	Direct injection Continuous Multistep	PV	10-50 x10 ⁶	2ml/min	7d
Yagi 2013	Pig MH	Multistep	PV	100 x10 ⁶	4ml/min	7d

Table 2. Culture media used by different authors

Author	Media	
Baptista 2010 ¹	RPMI 1640, FBS, dexamethasone, penicillin- streptomycin, prolactin, glucagon, niacinamide, lipoic acid, triiodothyronine, hEGF, hHDL, hHGF, hGH, insulin, transferrin	
Uygun 2010³	William's E, FBS, insulin, EGF, glucagon, hydrocortisone, penicillin-streptomycin	
Soto 2011 ⁶³	EMEM, EGF, HGF, dexamethasone, insulin, human transferring, selenous acid supplement, penicillin-streptomycin	
Yagi 2013 ⁶³	DMEM, EGF, hidrocortisone, insulin, glucagon, penicillin-streptomycin	

Caralt M. Organogenesis 2014;10(2):250

Different decellularization "recipes" in liver

Uygun	rat	SDS Triton X-100	0.01% 24h, 0.1% 24h, 1% 24h 1% 30min	1ml/min
Baptista	rat	Triton X-100 + NH4 OH	1%+3%, 3h	5ml/min
Soto	rat	Trypsin + EGTA Triton X-100 + EGTA	0.02%+0.05%, 2h 3%+0.05%, 24h	8ml/min
Вао	rat	Adenosine SDS	10mM 1% 4h, 0.5% 4h, 0.25% 4h	25ml/min
Yagi	pig	SDS Triton X-100	0.01% 24h, 0.1% 24h, 1% 48h 1% 30min	30ml/min
Ко	pig	Triton X-100 + NH4 OH	1%+3%, 3h	0.5ml/min

Different decellularization "recipes" in liver

Uygun	rat	SDS Triton X-100	A
Baptista	rat	Triton X-100 + NH4 OH	
Soto	rat	Trypsin + EGTA Triton X-100 + EGTA	1cm 1cm 1cm
Вао	rat	Adenosine SDS	e f
Yagi	pig	SDS Triton X-100	Collagen IV Laminin Fibronectin
Ко	pig	Triton X-100 + NH4 OH	H&E Collagen IV Lamínin Fibronectin

... best decellularization protocol in kidneys

Caralt et al. Am J Transplant 2015; 15:64-75

bFGF, basic fibroblast growth factor; ECM, extracellular matrix; H&E, hematoxylin & eosin; SEM, scanning electron microscopy; SDS, sodium dodecyl sulfate; VEGF, vascular endothelial growth factor.

For each criterion, protocols were evaluated and assigned one of three values: good (+), fair (+/-) or poor (-) at reaching a target goal. Each protocol was evaluated independently of the other two protocols, and is compared to normal kidneys.

Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix

Basak E Uygun¹

NATURE MEDICINE VOLUME 16 NUMBER 7 | JULY 2010 Primary rat hepatocytes

The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid

BAPTISTA ET AL. HEPATOLOGY, Vol. 53, No. 2, 2011

hFLCs + hUVEC

Uygun. Nature 2010;16(7):814-821

Recellularization

20% albumin production of *in vivo* levels

(e_j) Normalized gene expression of Cyp2c11 (e), Gstm2 (f), Ugt1a1 (g), Cyp1a1 (h), Adh1 (i) and Cyp3a18 (j). All error bars represent s.e.m. (n = 3).

30% drug metabolism gene expression of *in vivo* levels

Recellularization

Baptista et al. Hepatology 2010 Nov;12:604-617

Direct parenchymal injection	Continuous perfusion	Multistep infusion
Direct injections into different lobes	Cells suspendended in culture media	Cells through Porta Vein 4 steps at 10-15min interval

Soto A. Tissue Eng Part C Methods 2011;17(6):677-86

Recellularization

Soto A. Tissue Eng Part C Methods 2011;17(6):677-86

Decellularization

Transplantation

Recellularization Maturation

Transplantation

^{*} Baptista et al. Hepatology 2010;12:604-617

8h viability thrombosis

^{**} Uygun. Nature 2010;16(7):814-821

Transplantation

LbL self-assembly technique

Polyelectrolyte polydiallydimethylammoniuum chloride (PDADMAC) positively charged

Heparine negatively charged

Thromboresistant after 3h of blood perfusion

After 72h, hepatocytes maintained normal morphology

Antibody conjugation method

1. Anti endothelial cell antibodies to stabilize seeded cells on the vessel walls. Rat anti-mouse CD31 antibody was conjuated to the acellular liver scaffold

Ko et al. Biomaterials 2015;40:72-79

Antibody conjugation method

- 1. Anti endothelial cell antibodies to stabilize seeded cells on the vessel walls: Rat anti-mouse CD31 antibody was conjuated to the acellular liver scaffold
- 2. ReEndothelization with endothelial cells (MS1) expressing GFP protein

Ko et al. Biomaterials 2015;40:72-79

Re-endothelialization characterization

Antibody conjugation method

- 1. Anti endothelial cell antibodies to stabilize seeded cells on the vessel walls: Rat anti-mouse CD31 antibody was conjuated to the acellular liver scaffold
- 2. ReEndothelization with endothelial cells (MS1) expressing GFP protein
- 3. Implantation of engineered porcine liver construct

Heterotopically implantation into pig Left renal artery – Portal vein Left renal vein - Inferior vena cava

Transplantation

In vivo functional testing

Intraoperative

4h after implantation

In vivo functional testing: POD 1

In vivo functional testing: POD 1

Ko et al. Biomaterials 2015;40:72-79

In vitro functional testing: POD 1

Ko et al. Biomaterials 2015;40:72-79

Baptista et al. Hepatology 2010 Nov;12:604-617

70M human fetal hepatocytes

4 livers (17-21 weeks gestation)

Number is important...

... size is important too

Future directions

Co-Culture with other non-parenchymal cells

Future directions

- Co-Culture with other non-parenchymal cells
- Cholangiocytes Biliary tree

- Decellularized livers are a good option to obtain scaffolds because architecture and vasculature are well preserved
- Cells are "happy" in the scaffolds
 mature hepatocytes: viable and functional
 immature cells: differentiate into cells present in the liver
- Multistep recellularization
- Endothelization needed for transplantation
- Main concerns: number of cells and size of organoid
- Future directions:

Coculture with other non-parenchymal cells
Cholangiocytes and Bile Duct

Organ Bioprinting: technology to fabricate scaffolds

- Based on the Additive Manufacturing Technology
 Technique that produces complex 3D structures being able to control the size, shape, distribution and interconnectivity of pores of the scaffold
- Allow direct cell deposition in organotypic architecture

Mironov. Biomaterials 2009;30(12):2164-2174

Mironov. Biomaterials 2009;30(12):2164-2174

Mironov. Biomaterials 2009;30(12):2164-2174

Table 1: Tissue engineering applications using bioprinting technology

Tissue	Techniques	Cell types	Growth factors	Materials
Heart valve	Extrusion-based bioprinting	Aortic valve interstitial cell Aortic root sinus smooth muscle cell	-	Hyaluronic acid Gelatin Alginate
Myocardial tissue Blood vessel	Extrusion-based bioprinting Jetting-based bioprinting	Cardiomyocyte progenitor cell Endothelial cell Smooth muscle cell Mesenchymal stem cell	-	Alginate Fibrin
	Extrusion-based bioprinting	Endothelial cell Cardiac cell Smooth muscle cell Fibroblast	-	Collagen Agarose Alginate
Musculo-skeletal tissue	Jetting-based bioprinting	Muscle-derived stem cells Myoblast Mesenchymal fibroblast	BMP-2 FGF-2	Fibrin
	Extrusion-based bioprinting	Bone marrow stromal cell Endothelial progenitor cell Endogeneous stem cell	TGF-β	Agarose Alginate Hydroxyapatite Polycaprolactone
Nerve	Jetting-based bioprinting	Embryonic motorneuron cell Hippocampal cell Cortical cell Neuronal precursor cell Neural stem cells	CNTF VEGF	Soy agar Collagen Fibrin
	Extrusion-based bioprinting	Bone marrow stem cell Schwann cells	-	Agarose
Skin	Jetting-based bioprinting	Dermal fibroblast Epidermal keratinocyte	-	Collagen

Seol et al. Eur J Cardiothorac Surg 2014;46:342-348

