Present and future of regenerative medicine ## **Liver Transplantation** Mireia Caralt, MD PhD Servei Cirurgia HBP i Trasplantaments March 19, 2015 ## Solid organs: structural complexity!! Ideal scaffold: biocompatibility, biodegradability, porosity, structural support #### **Artificial Scaffold** Difficult control of size, microarchitecture and interconnectivity of pores #### **Natural Scaffold** Organ Extracellular Matrix - Physical, chemical and molecular stimuli that enable cell engraftment - Preservation of vascular network - Low inmunogenicity Table 1. Studies in the literature | Author | Type Cells | Infusion Method | Via | Number Cells | Flow Rate | Time | |------------------|-----------------------------|---|-----------------------|---|------------------------------------|----------| | Baptista
2010 | hUVEC
hFLC
MS1 | Continuous | PV
IVC, PV, IVC+PV | 30x10 ⁶
70 x10 ⁶
100 x10 ⁶ | 3ml/min → 0.5ml/
min
5ml/min | 7d
3d | | Uygun
2010 | Rat MH
Endothelial cells | Multistep | PV | 200 x10 ⁶ | 15ml/min | 5d
5d | | Soto
2011 | Rat MH | Direct injection
Continuous
Multistep | PV | 10-50 x10 ⁶ | 2ml/min | 7d | | Yagi
2013 | Pig MH | Multistep | PV | 100 x10 ⁶ | 4ml/min | 7d | Table 2. Culture media used by different authors | Author | Media | | |-------------------------------|--|--| | Baptista
2010 ¹ | RPMI 1640, FBS, dexamethasone, penicillin-
streptomycin, prolactin, glucagon, niacinamide, lipoic
acid, triiodothyronine, hEGF, hHDL, hHGF, hGH, insulin,
transferrin | | | Uygun
2010³ | William's E, FBS, insulin, EGF, glucagon, hydrocortisone, penicillin-streptomycin | | | Soto
2011 ⁶³ | EMEM, EGF, HGF, dexamethasone, insulin,
human transferring, selenous acid supplement,
penicillin-streptomycin | | | Yagi
2013 ⁶³ | DMEM, EGF, hidrocortisone, insulin, glucagon, penicillin-streptomycin | | Caralt M. Organogenesis 2014;10(2):250 ### Different decellularization "recipes" in liver | Uygun | rat | SDS
Triton X-100 | 0.01% 24h, 0.1% 24h, 1% 24h
1% 30min | 1ml/min | |----------|-----|------------------------------------|---|-----------| | Baptista | rat | Triton X-100 + NH4 OH | 1%+3%, 3h | 5ml/min | | Soto | rat | Trypsin + EGTA Triton X-100 + EGTA | 0.02%+0.05%, 2h
3%+0.05%, 24h | 8ml/min | | Вао | rat | Adenosine SDS | 10mM
1% 4h, 0.5% 4h, 0.25% 4h | 25ml/min | | Yagi | pig | SDS
Triton X-100 | 0.01% 24h, 0.1% 24h, 1% 48h
1% 30min | 30ml/min | | Ко | pig | Triton X-100 + NH4 OH | 1%+3%, 3h | 0.5ml/min | | | | | | | ### Different decellularization "recipes" in liver | Uygun | rat | SDS
Triton X-100 | A | |----------|-----|------------------------------------|-------------------------------------| | Baptista | rat | Triton X-100 + NH4 OH | | | Soto | rat | Trypsin + EGTA Triton X-100 + EGTA | 1cm 1cm 1cm | | Вао | rat | Adenosine SDS | e f | | Yagi | pig | SDS
Triton X-100 | Collagen IV Laminin Fibronectin | | Ко | pig | Triton X-100 + NH4 OH | H&E Collagen IV Lamínin Fibronectin | #### ... best decellularization protocol in kidneys Caralt et al. Am J Transplant 2015; 15:64-75 bFGF, basic fibroblast growth factor; ECM, extracellular matrix; H&E, hematoxylin & eosin; SEM, scanning electron microscopy; SDS, sodium dodecyl sulfate; VEGF, vascular endothelial growth factor. For each criterion, protocols were evaluated and assigned one of three values: good (+), fair (+/-) or poor (-) at reaching a target goal. Each protocol was evaluated independently of the other two protocols, and is compared to normal kidneys. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix Basak E Uygun¹ NATURE MEDICINE VOLUME 16 NUMBER 7 | JULY 2010 Primary rat hepatocytes ## The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid BAPTISTA ET AL. HEPATOLOGY, Vol. 53, No. 2, 2011 hFLCs + hUVEC Uygun. Nature 2010;16(7):814-821 ## Recellularization 20% albumin production of *in vivo* levels (e_j) Normalized gene expression of Cyp2c11 (e), Gstm2 (f), Ugt1a1 (g), Cyp1a1 (h), Adh1 (i) and Cyp3a18 (j). All error bars represent s.e.m. (n = 3). 30% drug metabolism gene expression of *in vivo* levels ## Recellularization Baptista et al. Hepatology 2010 Nov;12:604-617 | Direct parenchymal injection | Continuous perfusion | Multistep infusion | |--|-------------------------------------|--| | Direct injections into different lobes | Cells suspendended in culture media | Cells through Porta Vein
4 steps at 10-15min interval | Soto A. Tissue Eng Part C Methods 2011;17(6):677-86 ## Recellularization Soto A. Tissue Eng Part C Methods 2011;17(6):677-86 **Decellularization** ## **Transplantation** Recellularization Maturation ## Transplantation ^{*} Baptista et al. Hepatology 2010;12:604-617 8h viability thrombosis ^{**} Uygun. Nature 2010;16(7):814-821 ## Transplantation #### LbL self-assembly technique Polyelectrolyte polydiallydimethylammoniuum chloride (PDADMAC) positively charged Heparine negatively charged Thromboresistant after 3h of blood perfusion After 72h, hepatocytes maintained normal morphology #### **Antibody conjugation method** 1. Anti endothelial cell antibodies to stabilize seeded cells on the vessel walls. Rat anti-mouse CD31 antibody was conjuated to the acellular liver scaffold Ko et al. Biomaterials 2015;40:72-79 #### **Antibody conjugation method** - 1. Anti endothelial cell antibodies to stabilize seeded cells on the vessel walls: Rat anti-mouse CD31 antibody was conjuated to the acellular liver scaffold - 2. ReEndothelization with endothelial cells (MS1) expressing GFP protein Ko et al. Biomaterials 2015;40:72-79 #### Re-endothelialization characterization #### **Antibody conjugation method** - 1. Anti endothelial cell antibodies to stabilize seeded cells on the vessel walls: Rat anti-mouse CD31 antibody was conjuated to the acellular liver scaffold - 2. ReEndothelization with endothelial cells (MS1) expressing GFP protein - 3. Implantation of engineered porcine liver construct Heterotopically implantation into pig Left renal artery – Portal vein Left renal vein - Inferior vena cava ## Transplantation #### In vivo functional testing #### Intraoperative 4h after implantation #### In vivo functional testing: POD 1 #### In vivo functional testing: POD 1 Ko et al. Biomaterials 2015;40:72-79 In vitro functional testing: POD 1 Ko et al. Biomaterials 2015;40:72-79 Baptista et al. Hepatology 2010 Nov;12:604-617 70M human fetal hepatocytes 4 livers (17-21 weeks gestation) Number is important... ... size is important too ## **Future directions** Co-Culture with other non-parenchymal cells ## **Future directions** - Co-Culture with other non-parenchymal cells - Cholangiocytes Biliary tree - Decellularized livers are a good option to obtain scaffolds because architecture and vasculature are well preserved - Cells are "happy" in the scaffolds mature hepatocytes: viable and functional immature cells: differentiate into cells present in the liver - Multistep recellularization - Endothelization needed for transplantation - Main concerns: number of cells and size of organoid - Future directions: Coculture with other non-parenchymal cells Cholangiocytes and Bile Duct #### **Organ Bioprinting**: technology to fabricate scaffolds - Based on the Additive Manufacturing Technology Technique that produces complex 3D structures being able to control the size, shape, distribution and interconnectivity of pores of the scaffold - Allow direct cell deposition in organotypic architecture Mironov. Biomaterials 2009;30(12):2164-2174 Mironov. Biomaterials 2009;30(12):2164-2174 Mironov. Biomaterials 2009;30(12):2164-2174 Table 1: Tissue engineering applications using bioprinting technology | Tissue | Techniques | Cell types | Growth factors | Materials | |-----------------------------------|--|---|----------------|---| | Heart valve | Extrusion-based bioprinting | Aortic valve interstitial cell
Aortic root sinus smooth muscle cell | - | Hyaluronic acid
Gelatin
Alginate | | Myocardial tissue
Blood vessel | Extrusion-based bioprinting
Jetting-based bioprinting | Cardiomyocyte progenitor cell
Endothelial cell
Smooth muscle cell
Mesenchymal stem cell | - | Alginate
Fibrin | | | Extrusion-based bioprinting | Endothelial cell
Cardiac cell
Smooth muscle cell
Fibroblast | - | Collagen
Agarose
Alginate | | Musculo-skeletal tissue | Jetting-based bioprinting | Muscle-derived stem cells
Myoblast
Mesenchymal fibroblast | BMP-2
FGF-2 | Fibrin | | | Extrusion-based bioprinting | Bone marrow stromal cell
Endothelial progenitor cell
Endogeneous stem cell | TGF-β | Agarose
Alginate
Hydroxyapatite
Polycaprolactone | | Nerve | Jetting-based bioprinting | Embryonic motorneuron cell
Hippocampal cell
Cortical cell
Neuronal precursor cell
Neural stem cells | CNTF
VEGF | Soy agar
Collagen
Fibrin | | | Extrusion-based bioprinting | Bone marrow stem cell
Schwann cells | - | Agarose | | Skin | Jetting-based bioprinting | Dermal fibroblast
Epidermal keratinocyte | - | Collagen | Seol et al. Eur J Cardiothorac Surg 2014;46:342-348