IMMUNOSUPPRESSION WITHDRAWAL IN LIVER GRAFT RECIPIENTS WITH RECURRENT HCV-INFECTION

Felix Bohne¹, Juan Lozano¹, Maria Londoño¹, Marta Lopez¹, Carlos Benitez¹, Cecilia Ortiz², Marina Berenguer², Xavier Forns¹, Antoni Rimola¹, Alberto Sanchez-Fueyo¹

¹Hospital Clinic/IDIBAPS/CIBERehd Liver Transplant Unit, Hospital Clinic Barcelona, Barcelona, Spain, ²Unidad de Inmunidad Experimental, Centro de Investigación, Hospital La Fe, Valencia, Spain.
Hepatitis C Virus in Transplantation

• HCV is a well adapted hepatotropic virus with elaborate immune evasion strategies and is infecting an immunopriviliged organ

• altogether this makes HCV a very elusive target for anti-viral therapy

• liver damage due to chronic HCV-infection is the leading cause for liver Tx

• HCV-infection universally recurs after Tx

• usually leads to accelerated progression of liver damage after recurrence
The pathogenesis of recurrent HCV-infection is unknown

Several Hypotheses account for the accelerated pathogenesis of recurrent HCV-infection after liver transplantation:

• due to the presence of immunosuppressive drugs who blunt an active antiviral response

• bottleneck effect with a preferential expansion of HCV-quasispecies especially well fit for the proliferation in the hepatocytes of the newly grafted organ

• effect of the inflammatory situation due to ischemia-reperfusion injury immediately after Tx
Due to these potential harmful effects of immunosuppression, HCV-infected liver recipients might be a population that particularly benefits from IS withdrawal strategies. In previous studies it has been shown, that up to 20% of HCV infected liver recipients could be successfully weaned off IS and that withdrawal was ameliorating disease progression.

IS withdrawal in liver recipients

In previous case-controlled cross-sectional IS withdrawal studies we have characterized the immunologic parameters associated with tolerance in blood samples from liver recipients.

<table>
<thead>
<tr>
<th>gene</th>
<th>fold change</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLRF1</td>
<td>1.879</td>
<td><0.05</td>
</tr>
<tr>
<td>SLAMF7</td>
<td>1.414</td>
<td><0.05</td>
</tr>
</tbody>
</table>

On the basis of this previous work we hypothesize, that the assessment of these phenotypic and transcriptional biomarkers could be useful to identify HCV-infected liver recipients with a high likelihood of developing tolerance.
Prospective study of immunosuppression withdrawal in HCV infected recipients

Inclusion criteria:

i) $V_\delta 1/V_\delta 2$ T-cell ratio above the predefined threshold of 2.33 or increased expression of SLAMF7/KLRF1

ii) no indication for peg IFNγ/ribavirin during the weaning procedure

iii) stable liver function tests for at least 6 months

iv) no evidence of autoimmune liver disease

v) absence of acute/chronic rejection episodes in the previous 12 months

vi) absence of fibrosis stage III or IV in baseline liver biopsy

In case of conformity, gradual IS withdrawal was offered.
Study design

72 enrolled liver recipients

- high likelihood of tolerance due to increased Vδ1/Vδ2 T-cell ratio and gene expression

Exclusion 11

Offered IS withdrawal 38

23 (controls)

Demographics:

<table>
<thead>
<tr>
<th>Age</th>
<th>61.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time since Tx</td>
<td>7.1 (years)</td>
</tr>
<tr>
<td>Sex</td>
<td>79% male</td>
</tr>
</tbody>
</table>

Baseline IS:

<table>
<thead>
<tr>
<th>CNI</th>
<th>88%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimetabolite</td>
<td>4%</td>
</tr>
<tr>
<td>Rapamycin</td>
<td>8%</td>
</tr>
</tbody>
</table>
Immunosuppression withdrawal in HCV infected recipients

Collected Samples:
- sequential peripheral blood (Elsipot/Flow cytometry/gene expression)
- liver biopsies (gene expression)
- sequential serum samples (protein markers)
- TOL and Non-TOL patients were followed-up for 12 months following successful IS withdrawal or rejection.

IS withdrawal (38)

Exclusion during IS withdrawal (2)

In process 5 (3 WIS)

TOL 16 (43%)

Non-TOL 15 (40%)
Phenotypical biomarkers facilitate the selection of recipients with high likelihood of tolerance

Vδ1/Vδ2 T-cell ratio (threshold 2.33)

<table>
<thead>
<tr>
<th></th>
<th>TOL (>2.33)</th>
<th>Non-TOL (<2.33)</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOL</td>
<td>12</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Non-TOL</td>
<td>8</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Sensitivity = 75%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specificity = 46%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessment of gene expression didn´t result in discriminative power
Characterization of virus-specific T-cell responses

HCV-specific IFNγ-Elispot analysis:
- 7-33 synthetic peptides per pool (excluded: E1, NS1, NS2)
- 13- to 18-mers with 11-12 amino acid overlaps (8 µg/ml final concentration)

EBV-specific IFNγ-Elispot analysis:
- set of defined HLA-restricted (Class I/CTL) EBV-epitopes (8-15 mers; 12 µg/ml final concentration)

Controls:
- HIV GAG peptide pool as negative control
- Antigen specific positive control (CEF: CMV, EBV, Influenza)
- Mitogenic positive control (PHA)
- Threshold: negative control plus three STDVs
Sequential characterization of virus-specific T-cell responses in HCV-positive graft recipients

HCV

- **1st Time-point**
 - Graph showing sfc/10^6 PBMC for various HCV antigens (Core, E2, NS3, NS4, NS5A, NS5B) across different time-points.
 - Normalized signal intensities with error bars indicating variability.

- **2nd Time-point**
 - Similar graph as 1st time-point, with sfc/10^6 PBMC values.
 - Consistent with 1st time-point, showing antigen-specific responses.

- **3rd Time-point**
 - Graph maintains consistency with previous time-points, showcasing antigen-specific T-cell responses.

EBV

- **1st Time-point**
 - Graph for EBV antigens (A2, B0, B44) showing sfc/10^6 PBMC.
 - Normalized signal intensities with threshold values indicated.

- **2nd Time-point**
 - Similar graph as 1st time-point, with sfc/10^6 PBMC values.
 - Consistent with 1st time-point, showing antigen-specific responses.

- **3rd Time-point**
 - Graph maintains consistency with previous time-points, showcasing antigen-specific T-cell responses.
Conclusions

• We confirmed that IS withdrawal can be accomplished in transplant recipients with active recurrence of HCV-infection.

• The use of immunophenotypic markers on PBMCs can be useful to identify HCV-infected recipients with a high likelihood of being tolerant.

• The potential benefit of IS withdrawal on the progression of HCV-disease remains to be demonstrated.

• We are currently completing the sequential Elispot analyses, flow cytometry and gene expression in peripheral blood and liver tissue.

• We expect that the results of these studies will yield a refined set of biomarkers to accurately predict the outcome of IS withdrawal in future studies of HCV-infected recipients.
Acknowledgements

Hospital Clinic Barcelona
Marc Martínez Llordella
Juanjo Lozano
Carlos Benítez
Marta Lopez
Maria Londoño
J. García-Valdecasas
Juan Gonzales Abralde
Xavier Forns
Antoni Rimola
Alberto Sanchez Fueyo

Hospital la Fe Valencia
Cecilia Ortiz
Marina Berenguer