# "Omics" technologies and allograft injury

David Rush





## Graft survival by year of transplantation

DeKAF (Decline in Kidney Allograft Function) Study Group Matas, Kasiske, Hunsicker, Gaston, Mannon, Cecka, Gourishankar, Halloran, Rush





## **Deterioration of Kidney Allograft Function**

University of Manitoba

### **DeKAF Study**

Prospective/cross-sectional study (~ 5000 patients)

- Participating centres: Minneapolis (Matas, PI; Kasiske), Mayo Clinic (Cosio, Grande), Iowa (Hunsicker), Alabama (Gaston, Mannon), UCLA (Cecka), Alberta (Gourishankar, Halloran), Manitoba (Rush)
- Renal Biopsies done "for cause" (n ~ 800) (Mayo Clinic)
- Urine magnetic resonance done in Winnipeg



# DeKAF: Hypotheses

- 1) Progressive graft dysfunction is due to ongoing active injury, and is not necessarily the consequence of past events;
- 2) There are discrete, definable entities responsible for injury, that lead to chronic graft deterioration and late graft loss;
- 3) These entities can be differentiated by means of clinical, laboratory, and pathologic studies;
- 4) Accurate diagnosis offers the best hope for the development of interventional trials.

Gourishankar el al, Am J Transplant (2010); 10: 324



#### **Enrollment: Prospective and Cross-sectional cohorts**



### Depiction of clusters – "cluster clocks"

#### **Legend**





#### UNIVERSITY MANITOBA Inflammation in areas of fibrosis ("iatr"; A) and tubulitis in atrophic tubules ("tatr"; B)





Inflammation in areas of scar

Has previously been excluded from Banff

### **Original DeKAF clusters (n = 265; now 370)**

C٧

PTC

Cluster 2-N=40

CG

Cluster 5:N=29





<u>Cluster 1</u> – mild inflammation; mild fibrosis

v

Ċ

G

v

<u>Cluster 2</u> – ai, at, iatr, tatr; mild fibrosis

<u>Cluster 3</u> – ai, at, iatr, cg; fibrosis

<u>Cluster 5</u> – no ai, at; only iatr, tatr; fibrosis

PTC in several clusters

Actuarial Graft Survival by Cluster and by "iatr" score





of MANITOBA

### **Systems Biology Approach: Profiling all Components in a Sample**



#### Microarray analysis of rejection using pathogenesis based transcripts (PBT)



Mueller et al, Am J Transplant (2007); 7: 2712-2722





UNIVERSITY Urine Metabolomics: Methodology

- The large number of data points in MR spectra requires an informatics approach:
- The strategy for "pattern recognition" has 4 stages:
  - 1) Pre-processing : Area normalization, peak alignment
  - 2) Feature selection: Identification of maximally discriminating averaged subregions of the spectra;
  - 3) Classifier development: With these subregions, crossvalidated linear discriminant analysis classifiers are developed

4) Accurate visualization of results
 Somorjai RL et al. Artificial Intelligence Methods and Tools for Systems Biology (Dubitzky W and Azuaje F, (eds.)), Computational Biology Series, Vol. 5 Springer pp. 67-85 (2004)

# Urine spectra from DeKAF patients

- Matching urine spectra/biopsy pairs (u/b) studied to date are 457:
  - 102 u/b from patients with varying degrees of fibrosis but no inflammation;
  - 150 u/b from patients with varying degrees of fibrosis and severe inflammation in both normal and atrophic parenchyma;
  - 108 u/b from patients with varying degrees of fibrosis and minor inflammation mostly in atrophic parenchyma;
  - 97 u/b from patients with transplant glomerulopathy.



# 1. Can Urine MR spectra distinguish between IF <u>with</u> severe inflammation and IF <u>without</u> inflammation

- One hundred (100) patients with IF plus severe inflammation and 68 patients with IF minus inflammation were used for the training set; and 50 and 34 independent patients, respectively, were used as the test set.
- The 3,300 data point data set of the average spectra was analyzed (100 points at a time) and the best classifier was developed on the training set. The classifier was validated with the independent test set.
- Visualization of the data was done using the "class-proximity plane" graphic.

### Conclusions

- Urine magnetic resonance spectroscopy (UMRS) distinguishes IF with severe inflammation from IF without inflammation with ~90% accuracy.
- The extent of inflammation (severe vs. minor) can also be accurately determined by UMRS with ~90% accuracy.
- Similarly, IF without inflammation can be distinguished from minor inflammation by UMRS with ~ 90% accuracy.
- Validation of UMRS signatures for other allograft pathologies e.g. transplant glomerulopathy is in progress.
- The non-invasive nature of UMRS will allow for repeat testing to evaluate changes in spectra and their correlation with specific interventions and their outcomes in prospective studies.

Thank you!