

Bioengineering in Organ Transplantation: Focus on Liver

Alejandro Soto-Gutierrez M.D.; Ph.D.

Center for Innovative Regenerative Therapies, Department of Surgery, Transplantation Section and Children's Hospital of Pittsburgh, McGowan Institute for Regenerative Medicine and University of Pittsburgh

Thursday, March 17, 2011

Successful First Organ Transplantation History

1905: First successful cornea transplant by Eduard Zirm

1954: First successful <u>kidney transplant</u> by Joseph Murray (Boston, U.S.A.)

1966: First successful pancreas transplant by Richard Lillehei and William Kelly (Minnesota, U.S.A.)

1967: First successful <u>liver transplant</u> by Thomas Starzl (Denver, U.S.A.)

1967: First successful heart transplant by Christiaan Barnard (Cape Town, South Africa)

1981: First successful <u>heart/lung transplant</u> by Bruce Reitz (Stanford, U.S.A.)

1983: First successful lung lobe transplant by Joel Cooper (Toronto, Canada)

1986: First successful double-lung transplant (Ann Harrison) by Joel Cooper (Toronto, Canada)

1995: First successful laparoscopic live-donor nephrectomy by Lloyd Ratner and Louis Kavoussi (Baltimore, U.S.A.)

1998: First successful live-donor partial pancreas transplant by David Sutherland (Minnesota, U.S.A.)

1998: First successful hand transplant (France)

2005: First successful partial <u>face transplant</u> (France)

2006: First jaw transplant to combine donor jaw with bone marrow from the patient, by Eric M. Genden (Mount Sinai Hospital, New York)

2008: First successful complete full double arm transplant by Edgar Biemer, Christoph Höhnke and Manfred Stangl (Technical University of Munich, Germany)

2008: First transplant of a human windpipe using a patient's own stem cells, by Paolo Macchiarini (Barcelona, Spain)

2010: First successful <u>full face transplant</u> by Dr Joan Pere Barret and team (Vall d'Hebron University Hospital of Barcelona, Spain)

Success!!

Organ Transplantation Waiting List vs Transplanted Patients

United Network for Organ Sharing (<u>http://www.unos.org</u>/)

Alternative Technologies to Organ Transplantation

Regenerative Medicine Approaches for Organ Replacement

a) In vivo Organ Repopulation

b) Organ Bioengineering

Treatment of the Crigler–Najjar Syndrome Type I with Hepatocyte Transplantation

Ira J. Fox, M.D., Jayanta Roy Chowdhury, M.D., Stuart S. Kaufman, M.D., Timothy C. Goertzen, M.D., Namita Roy Chowdhury, Ph.D., Phyllis I. Warkentin, M.D., Kenneth Dorko, B.S., Bernhard V. Sauter, M.D., and Stephen C. Strom, Ph.D. N Engl J Med 1998; 338:1422-1427 May 14, 1998

7.5×10⁹ hepatocytes were infused through the portal-vein catheter over a period of 15 hours.

Hepatic Irradiation Augments Engraftment of Donor Cells Following Hepatocyte Transplantation

Disruption of Lining Endothelial Cells

*Space!!! *Growth Advantage!!!

Growth Advantage for Donor cells in the Irradiated Area

Fox IJ, Roy-Chowdhury J, Guha C. Hepatology. 2009 Jan;49(1):258-67

Regenerative Medicine Approaches for Organ Replacement

a) In vivo Organ Repopulation

b) Organ Bioengineering

Tissue-engineered autologous bladders for patients needing cystoplasty

Anthony Atala, Stuart B Bauer, Shay Soker, James J Yoo, Alan B Retik

Urothelial and muscle cells were grown in culture, and seeded on a biodegradable bladder-shaped scaffold made of collagen, or a composite of collagen and polyglycolic acid. Seven patients with myelomeningocele, aged 4-19 years, with high-pressure or poorly compliant bladders were transplanted with Engineered Bladders!

Cytoscopic Biopsies of implanted engineered bladders

Engineered Bladder

Native Bladder

Clinical Application of an Acellular Biologic Scaffold for Surgical Repair of a Large, Traumatic Quadriceps Femoris Muscle Defect

Traumatic Injury with Muscle loss

Muscle Reconstruction and **Regeneration** by surgical implantation of a multi-layered scaffold composed of extracellular matrix derived from porcine intestinal submucosa.

5m Before Bioengineered Scaffold engineered Scaffold Implantation

9m After Bio-Implantation

5m Before Bioengineered Scaffold Implantation

9m After Bioengineered Scaffold Implantation

Mase VI, Badylak S, Walters TJ. Orthopedics. 2010

Clinical transplantation of a tissue-engineered airway

Paolo Macchiarini, Philipp Jungebluth, Tetsuhiko Go, M Adelaide Asnaghi, Louisa E Rees, Tristan A Cogan, Amanda Dodson, Jaume Martorell, Silvia Bellini, Pier Paolo Parnigotto, Sally C Dickinson, Anthony P Hollander, Sara Mantero, Maria Teresa Conconi, Martin A Birchall

Clinical transplantation of a tissue-engineered airway. Macchiarini P, et al. Lancet. 2008 Dec 13;372(9655):2023-30.

Solid Organ Decellularization

Thursday, March 17, 2011

Mode of Actions of Different Decellularization Methods

Organs After Cardiac Death

In US, about 40% of the eligible deaths never became actual donors and those organs are currently discarded; the estimated number of such potential donors is 250,000 per year.

Even if some of these organs are reconditioned for transplantation, the remaining organs would provide ample supply for organ engineering technologies.

Organ Donors and Transplantations in the United States, 1988–2006. Data are from the Organ Procurement and Transplantation Network. Steinbrook R, 2007. NEJM. 357;3

> Punch, J.D., et al., Organ donation and utilization in the United States, 1996-2005. Am J Transplant, 2007. 7(5 Pt 2): p. 1327-38. Safar, P. Clinical death symposium. Crit Care Med, 1988. 16: p. 919-920.

Protocols for Solid Organ Decellularization

medicine

Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart

Characterization of Decellularized Heart by SDS

Ott HC, Taylor DA. Nat Med. 2008 Feb; 14(2):213-21.

Recellularization of Decellularized Heart using Neonatal Cardiac Cells

Perfusion System and Static Ring tissue culture System

2% Contraction Fraction Compare to a Normal Heart

Ott HC, Taylor DA. Nat Med. 2008 Feb; 14(2):213-21.

Recellularization of Decellularized Heart using Neonatal Cardiac Cells

Perfusion System and Static Ring tissue culture System

2% Contraction Fraction Compare to a Normal Heart

Ott HC, Taylor DA. Nat Med. 2008 Feb; 14(2):213-21.

Tissue-Engineered Lungs for in Vivo Implantation

CHAPS (zwitterionic detergent)

Characterization of Acellular Lung Matrix

Petersen TH, Niklason LE. Science. 2010 Jun 28.

Implantation of Engineered Lungs into Rats

Implantation last from 45 min to 2h with effective O2 Exchange

Petersen TH, Niklason LE. Science. 2010 Jun 28.

Liver Bioengineering for Transplantation

Different Cellular and Acellular Components of the Liver

Decellularization of Whole Livers

Vascular Characterization and Preservation in the Natural Liver Scaffold

Re-engineering the Liver

Recellularization System

Reconstitution of about 10% of total cell mass

Uygun B, <u>Soto-Gutierrez A</u>, et al. Nat Med. 2010;16(7):814-20.

Hepatocyte Integration and Engraftment over Time (~90% of Cell Engraftment)

Characterization of the Re-engineered Livers

Functional Characterization of Re-engineered Livers in the Organ Culture System

Gene Array (Drug Metabolism)

Functional Analysis of Massive Re-cellularization of Liver Grafts

Reconstitution of about 50% of total cell mass

Normal Liver

In vivo Implantation of the Re-engineered Liver Grafts

Improved Whole Liver Decellularization Protocol

Soto-Gutierrez A, et al. Tissue Eng Part; 2011 Mar 4.

Fresh live:

Decellularized live

Characterization of the Decellularized Liver

Thursday, March 17, 2011

Bioengineering in Organ Transplantation: A Regenerative Medicine Approach

Decellularization of Organs

Liver Cell Biology

Organ Recellularization

Long-Term Organoide Culture

Long-Term Transplantation and Complete Repopulation of Recellularized Liver Grafts

> Cell/Organ Transplantation

Organ Engineering Using Cell Transplantation and Tissue Engineering Principles

Re-engineering of Complex Hepatic Structures

-Cell Differentiation and Interaction Studies

-New Generation of Organoids for Extracorporeal Support

-Bile Duct Regeneration

<u>Soto-Gutiérrez A</u>, Kobayashi N, et al. Nat Biotechnol. 2006;24(11):1412-9. Basma H, <u>Soto-Gutierrez A</u>, et al. Gastroenterology. 2009 Mar;136(3):990-9. Uygun B, <u>Soto-Gutierrez A</u>, et al. Nat Med. 2010 Jul;16(7):814-20.

Thursday, March 17, 2011

societat

Acknowledgments

Mcgowan Institute for Regenerative Medicine

Badylak's Lab Center for Innovative Regenerative Therapies

> Ira J Fox Strom's Lab Donna Stolz

Department of Surgery, Keio University School of Medicine, Tokyo, Japan

Hiroshi Yagi

Center for Engineering in Medicine

Martin LYarmush

Harvard Medical School, Massachusetts General Hospital Department of Surgery, Transplant Section

Funding

NIH, NIDDK American Liver Foundation

